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Abstract 

The advent of hypervisors revolutionized the computing industry in terms of 

malware prevention and detection, secure virtual machine managers, and cloud 

resilience. However, this has resulted in a disjointed response to handling known 

threats rather than preventing unknown zero-day threats. This thesis introduces a 

new paradigm to cloud computing – utility virtual machines – that directly 

leverages virtualization hardware for protection and eliminates often accepted 

roles of the operating system kernel. This represents a break from prevailing 

practices and serves to establish a hardware root of trust for system operation. 
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Chapter 1 – Introduction 

Problem: Adversaries tailor their attacks in the presence of a hypervisor, which 

alone cannot protect against zero-day vulnerabilities in the guest operating 

system 

 

Hypothesis: The ability to conduct zero-day attacks can be reduced through 

hardware isolation and a minimized code surface with acceptable performance. 

 

The approach advocated in this thesis to mitigating kernel-level zero-day attacks 

is to directly utilize hardware supported guest-virtual isolation in a radical new 

generation of hypervisor designs. These designs -- termed utility virtual machines 

(UVM) – improve security by eliminating the conventional kernel and replacing it 

with a collection of specialized virtual machines, which employ hardware 

protections to enforce isolation between system components such as device 

drivers and system daemons. This establishes a root of trust in hardware and 

prevents the compromise of one component from undermining the system as a 

whole. 

 

There are four central challenges to this technique: Can existing hardware 

virtualization mechanisms be used to extend conventional inter-process 

communication and synchronization mechanisms (such as rendezvous and 

message passing primitives) to the hypervisor layer? Can virtualization support 
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the fragmentation of an operating system into individual utility virtual machines 

to support the appearance of a cohesive system? Can the resulting security 

features be implemented in a manner that has a minor impact to performance? 

Finally, can methods be devised to schedule a multiplicity of tasks across multiple 

cores? 

 

1. 1 Background & Motivation 

Virtualization is enabled through the addition of a new layer to the software stack 

known as the hypervisor [1] or Virtual Machine Monitor (VMM) [2]. The 

hypervisor encapsulates the hardware, allowing it to be used by multiple operating 

system instances concurrently. This flexibility, coupled with the cost and 

performance advantages of sharing the underlying hardware, has revolutionized 

the computing industry: large numbers (i.e. hundreds of thousands) of generic 

hardware platforms, using multi-core blade technology, are now coupled through 

high-performance networking to produce a generic computing surface. Any subset 

of this collection can be combined to operate in tandem for a particular 

application using a multitude of operating systems. 

 

Conceptually, the hypervisor presents a virtual machine abstraction that restricts 

malicious code embedded in one operating system instance from affecting a 

different instance [3], by containing it within one virtual machine using hardware 

protection techniques This is achieved through type-1 or bare-metal virtualization 

[4] as seen in Figure 1.  
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Figure 1 - Bare-Metal Hypervisor 

	
  

In this configuration the hypervisor controls all of the hardware on the system. On 

top of the hypervisor sits one or more guest virtual machines, which contains an 

operating system’s kernel and its associated user space. The kernel provides 

networking, scheduling, and many other key processes. The guest’s view of 

hardware is however tightly controlled through the Intel Virtualization suite of 

VT-x (basic virtualization), VT-d (input output memory management unit 

virtualization), VT-c (network virtualization), and APICv (Interrupt 

Virtualization) [5]. This provides the isolation necessary to protect other guests 
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from a potentially compromised guest, but does not protect data resident inside of 

that guest. 

 

Unfortunately, hypervisors have introduced their own new security challenges: 

adversaries now actively attempt to detect the presence of an operating hypervisor 

in order to tailor attacks accordingly [6].  A wide range of hypervisor detection 

techniques have already appeared against popular systems such as VMWare, 

VirtualPC, Bochs, Hydra, Xen, and QEMU [7].  Often, these techniques operate 

by exploiting timing differences between virtualized and non-virtualized 

operations [8]. Alternatively, they detect unusual memory locations associated 

with key operating system data structures [9]. For example, the Red Pill technique 

works by using the SIDT X-86 instruction to determine the location in memory of 

the interrupt descriptor table; a machine running above a hypervisor will return a 

location much higher in memory than one that is not [10]. Following hypervisor 

detection, the adversary then attacks either the operating system, the virtual 

switch (vSwitch) sharing network connectivity between virtual machines, or the 

hypervisor itself [11].   

 

The presence of a hypervisor has no impact on the known and unknown zero-day 

vulnerabilities associated with a particular operating system. As a result, any 

exploit that leverages a known vulnerability will operate successfully [12] against 

any virtual machine running the system. Packaging this exploit within a 

propagating virus provides the adversary an opportunity to compromise every 
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virtual machine in the cloud running the same instance. It is this vulnerability 

amplification that poses the most significant threat to the future of cloud 

computing.   

 

After the attacker has gained a foothold and determined they are operating in a 

virtualized environment, they will attempt to compromise the hypervisor. This 

often entails chaining together multiple small pieces of kernel code known as 

gadgets in a Return Oriented Programming (ROP) attack [13,14,15]. This allows 

the hypervisor to be attacked by the code that was meant to protect it. ROP 

methods are made easier as attack surface increases, which equally raises the 

number of gadgets present. 

 

ROP attacks can be built to create direct attacks against a vSwitch may undermine 

the operation of multiple virtual machines on a single host by denying 

connectivity to all of them simultaneously.  The vSwitch provides the same 

functionality as a physical switch and in consequence exhibits the same 

vulnerabilities, enabling the same exploits [16]. For example, Address Resolution 

Protocol (ARP) spoofing, involves the interception of valid network packets by 

sending fake ARP packets to a switch [17].   

 

Going after the hypervisor itself involves the direct exploitation of vulnerabilities 

in the hypervisor. All virtual machines executing on a hypervisor have distinct 

data structures, separated in hardware. This separation forms a semantic gap [18] 
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that prevents virtual machines from having visibility or impact upon each other’s 

data structures [19]. Direct Kernel Structure Manipulation (DKSM) bridges the 

semantic gap by patching virtual machine data structures and redirecting 

hypervisor accesses to shadow copies. This allows the virtual machine to present 

false information to the hypervisor regarding the virtual machine state, which 

allows implants, such as rootkits [20], to persist without detection. 

 

Virtualization provides inherent redundancy and robust, large-scale, cost-effective 

availability of shared resources [21]. However, this perception is tempered by the 

risk of vulnerability amplification and the paucity of knowledge regarding zero-

day exploitation: history has shown that lack of detection does not imply lack of 

infection.  

 

To combat these risks, termed utility virtual machines separate and isolate the 

normal responsibilities associated with a congenital kernel as shown in Figure 2. 
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Figure 2 - Bare-Metal Hypervisor with Utility Virtual Machines 

 

Each UVM encapsulates a particular functionality and can include, but is not 

limited to, user applications, networking and Keyboard/VGA drivers. The benefit 

of this reorganization is that the standard kernel is eliminated as an entity and 

hardware isolation is enforced between each component of the system. If any 

particular UVM is compromised, the attacker has access to only a small subset of 

the system data taken as a whole. Furthermore, since most data structures and 

code are unique to the infected UVM, the attacker has little information to glean 

on other running UVMs. This is in stark contrast to the standard model, where a 

compromise of the network would give an attacker complete control of the guest 
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and all of its associated data, including many other operating system specific tasks 

and data structures. 

 

This new approach has only become possible in the last ten years: Moore’s law 

[22] has provided a rapid growth in the areas of multicore [23] and virtualization 

[24] technologies. The coupling of these two mechanisms at scale forms the basis 

for the UVM architecture. Each UVM is assigned a dedicated number of cores for 

optimal performance of its assigned individual task. Virtualization allows for the 

operation of non-homogenous VMs making it more difficult for an adversary to 

cross the semantic gap. Furthermore, the fragmentation afforded by UVMs has 

the dual benefit of increasing attacker workload and decreasing the attack surface, 

benefits that will be discussed in detail in chapters 4 & 5. 

 

1.2 Approach 

A complete operating system based on the UVM concept has been realized in the 

latest generation of a research operating system called Bear [25] under 

development at Dartmouth College. This system shares its core motivations of 

security, modularity, and resilience with MINIX [26], but directly integrates a 

Symmetric Multiprocessing (SMP) micro-kernel with an associated SMP 

hypervisor, using Intel x86-64 architectural support including VT-x and VT-d 

extensions. In previous versions of the Bear system, these technologies were 

coupled with extensive code sharing between the micro-kernel and hypervisor, 
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which served to reduce the attack surface and space of potential vulnerabilities 

[27].  

 

Figure 3 shows an overview of the original system that serves to illustrate the 

interplay of security concepts employed in the design. Like the MINIX micro-

kernel, device-drivers are operated from user-space where they can be refreshed 

in a manner similar to the MINIX regeneration process [26]. However, Bear 

intentionally makes no attempt to detect intrusions or failures; instead, potentially 

compromised device drivers, when not in use, are non-deterministically refreshed 

to deny persistence, regardless of their infection status. A similar approach is 

taken to deny persistence in the micro-kernel: the hypervisor non-

deterministically refreshes the micro-kernel periodically from a gold-standard, 

either at pre-arranged or non-deterministic times. Gold-standard images are stored 

within a read-only ramdisk, uploaded using iPXE’s signed and encrypted 

bootstrapping. Each time a component of the system is refreshed it is also 

diversified at load time [28]. This process, an enhanced form of Address Space 

Layout Randomization (ASLR), ensures that no two running instances of a binary 

share an exploitable address -- including the hypervisor itself, the micro-kernel, 

device drivers, system daemons, and user processes. This denies surveillance and 

reverse engineering while throttling vulnerability amplification caused by using 

the same micro-kernel throughout a cloud or high-performance computing 

infrastructure.    
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Figure 3 - Bear System Layout 

 

In common with other designs, the original micro-kernel handles multi-core 

scheduling of user processes and is responsible for protecting the micro-kernel 

from user processes, and user processes from each other. All processes and layers 

are hardened by strictly enforcing MULTICS-style read, write, and execute 

protections [29] using 64-bit x86 address translation hardware. The use of 

extended page table entries allows micro-kernel to be marked execute-only; recall 

that the normal x86 paging structures do not provide sufficient flexibility [30] to 

achieve this protection. Finally, although micro-kernel code is replicated in user 

processes, in common with many other operating system designs, an additional 

level of indirection allows its location within each process to be obfuscated [31]. 

 

Like MINIX, all potentially contaminated user processes, device drivers, and 

services are executed with user-level privileges and are strictly isolated from the 

micro-kernel via a message-passing interface. However, unlike MINIX, there is 

no system task, all system calls, IO, and process scheduling is achieved by 
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interrupt handlers with kernel privileges. These handlers mediate between 

processes and the kernel to rigidly enforce the interface. Unlike the MINIX 

rendezvous mechanism [32], Bear uses an asynchronous, bounded buffer interface 

similar to MPI [33] that provides a single uniform treatment of system calls, inter-

process, and off-chip inter-processor communication on blade servers. Similarly, 

in the rare event the micro-kernel is unable to complete a user process request, a 

VMExit may be generated, which is handled by the hypervisor in a similar 

fashion as to the micro-kernel handles interrupts. The hypervisor enforces the 

protection layer between the micro-kernel and the underlying physical hardware. 

The hypervisor having full control of the physical hardware accesses functionality 

as it is needed through memory mapped I/O (MMIO) and Model-Specific 

Registers (MSR). 

 

The rich collection of modern features in the Bear system provides the transition 

point to the UVM security model. The most important concept is the rigid 

enforcement of MULTICS protections [29] through virtualization hardware. 

These protections ensure that device drivers exist solely in user space as a single 

process that does not require kernel level privileges. Using this isolation model as 

a jumping off point, the functionality of these singular device driver processes can 

be transferred from a process to a UVM. However, this can only be accomplished 

by overcoming the core key research challenges: building a hypervisor message 

passing system, structural reorganization around utility virtual machines, 

performance optimization, and scheduling. 



 

	
   12	
  

 

Since message passing is central to MINIX and the Bear kernel alike, it will also 

become central to UVMs as they communicate requests between each other. This 

communication requires the creation of a message-passing interface to the 

hypervisor. This is particularly interesting facet of the research, since many 

members of the research community seek to operate within the hypervisor for the 

smallest possible time for efficiency. A message-passing interface requires 

additional compute cycles inside the hypervisor and consequently has the 

potential to slow the guests operation to some degree. However, since each UVM 

is not a full-fledged kernel, it was initially unclear how the reorganization would 

impact performance overall. As we will see, utility virtual machines trade what 

were once kernel cycles for hypervisor cycles. Unexpectedly, the performance 

results developed in this thesis show that the separation of duties and direct 

reliance on modern hardware actually generates a net improvement in 

performance (Chapters 4 & 5). 

 

To demonstrate the concepts, the latest generation of the Bear operating system is 

realized through a collection of three individual UVMs: a network UVM, a 

keyboard/VGA UVM, and a shell UVM that handles the responsibilities of a 

typical shell and is capable of scheduling user processes. Isolation between UVMs 

is enforced through hypervisor protection hardware and only legitimate 

communication can occur through the hypervisor messaging system. The 
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hypervisor schedules these three UVMs statically on bootstrapping to a set 

number of cores present on the system. 

 

A critical aspect of cloud computing and computing in general is the requirement 

of efficient, reliable, and scalable scheduling of processes. These aspects become 

more critical as multiple UVM’s schedule multiple processes simultaneously. 

Specifically, one UVM may run a scheduling algorithm to provide fairness, while 

another could pin processes to specific cores with particular hardware. To meet 

the criteria of efficiency, reliability, and scalability a diffusive scheduler [34] was 

explored within the shell UVM. This algorithm had previously been shown to be 

simple, scalable, and have attractive convergence properties under large scale 

simulations, but had not been previously been employed in practical systems.  

 

1.3 Performance Metrics 

Industry standard methods are used to assess performance in this thesis. The 

performance of the UVM system has been compared to standard monolithic 

operating systems with associated hypervisors and the original Bear system, 

operating on generic Dell workstations. Two benchmark suites were employed: 

To assess system memory utilization, a test suite developed by Chuck Lever and 

Chuck Boreham at the University of Michigan measures the performance of 

malloc() in a multithreaded system [35]. 
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In addition, the popular AIM9 benchmark suite is used to measure processor 

synthetic overhead through its addition, subtraction, and multiplication modules 

[36]. These tests stress the system by executing instructions that specifically target 

the internal processor logic.  

 

Beyond system benchmarks, recent studies have confirmed our intuition that the 

number of vulnerabilities in a code base is proportional to its size [27]. 

Consequently, attacker workload is estimated in terms of lines of source code 

loaded in memory. Each utility virtual machine presents a unique sand boxed 

attack surface, which can be enumerated. The CLOC utility was used to count 

these lines of code [37]. 

 

1.4 Contributions 

The contributions of this research are: 

 

• A novel system architecture based on the concept of Utility Virtual 

Machines in which the operating system kernel is replaced by a collection 

of virtual machines, each encapsulating a distinct system function. This 

architecture improves security by sandboxing system functions within 

virtual machines using hardware protection techniques. 

 

• A body of practical implementation techniques that serve to realize 

systems based on UVM’s. 
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• A practical demonstration and experimental analysis of UVM architecture 

that assesses memory utilization, processor performance, and impact on 

attacker workload based on three exemplars:  

  

o A Network UVM that comprises all the functionality to 

encapsulate a network card driver, network file system process, 

and network stack. 

o A keyboard/VGA UVM that contains all I/O functionality to 

interact with users [38].  

o A shell UVM that isolates the functionality to fork and schedule 

user processes on multiple cores [38]. 

 

• A generalized rendezvous-style message-passing system between UVMs 

that operates through the hypervisor, is adapted from those employed to 

provide system calls [38], and leverages modern APIC-interrupt 

mechanisms for efficiency 

 

• A practical heat diffusion scheduler to improve performance of process 

scheduling in the UVM architecture with an associated body of 

experimental analysis. 

 

• A novel hypervisor shim that inserts itself under a running micro-kernel 
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and leverages virtualization technology to enforce execute-only memory 

protection [30]. 

 

• A practical method for combining iPXE, DHCP, TFTP, and NFS to load 

binaries across the network and diversify them at load time [28]. 

 

• Creation of a micro-kernel that is treated as a dynamically linked library, 

which enables kernel diversification on a per-process basis [31]. 

 

• A body of practical techniques for realizing advanced hypervisor and 

micro-kernel designs that leverage modern 64-bit multicore and 

virtualization hardware. (Submitted to software practice and experience). 

 

1.5 Thesis Organization 

In outline, the thesis is divided into the following chapters: 

 

Ch 1: Introduction states the hypothesis and the associated challenges posed by 

the thesis, motivates the research, identifies the contributions, and describes the 

assessment metrics used in analysis. 

 

Ch 2: Related Work provides a survey of the relevant literature and demonstrates 

the opportunity to advance system security through the techniques developed in 

this thesis. 
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Ch 3: Symmetric Multiprocessing describes the multicore hypervisor and micro-

kernel created as part of this thesis. This chapter explores the design choices and 

specific details of bringing SMP to a system from boot to virtualization. 

 

Ch 4: Utility Virtual Machines (UVM) describes the creation of the UVM 

rendezvous message passing system and its use to couple together the first UVM 

prototypes through the hypervisor. 

 

Ch 5: A Further Abstraction: The Network UVM discusses the challenges and 

solutions for moving a non-trivial operating system component into a UVM 

encapsulation. 

 

Ch 6: Heat Diffusion Scheduling details the implementation of a novel scheduling 

technique to improve performance in multicore environments.  

 

Ch 7: Future Work and Conclusions makes concluding remarks on the work 

presented in earlier chapters and describes directions for future work. 
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Chapter 2 – Related Work 

Prior to the start of the UVM work, a survey and analysis of the current security 

measures implemented with hypervisors to prevent ROP and other attacks was 

conducted. The viability of an efficient virtualization layer has led to an explosive 

growth in the cloud computing industry, exemplified by Amazon’s Elastic Cloud, 

Apple’s iCloud, and Google’s Cloud Platform. However, the growth of any sector 

in computing often leads to increased security risks. This chapter explores these 

risks and the evolution of mitigation techniques in open source cloud computing. 

Unlike uniprocessor security, the use of a large number of nearly identical 

processors acts as a vulnerability amplifier: a single vulnerability being replicated 

thousands of times throughout the computing infrastructure. Currently, the 

community is employing a diverse set of techniques in response to the perceived 

risk. These include malware prevention and detection, secure virtual machine 

managers, and cloud resilience. These three categories and their roles in 

preventing an attacker from gaining access to the cloud are illustrated in Figure 4.  
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Figure 4 - Example Security Techniques in the Cloud 

	
  

Omitted from Figure 4 are cloud services that provide authentication such as 

lightweight active directory protocol servers and trusted computing techniques as 

they are outside the scope of this survey. Initially, the attacker has to overcome or 

bypass the intrusion detection and prevention systems typically employed at the 

cloud boundary. They are then faced with a secure hypervisor usually installed on 

a single host; whose purpose is to restrict access to kernel and hypervisor data 

structures. Finally, cloud resilience, is used by a host to restore a single 

compromised or failed virtual machine to a known good state. Although not 

currently prevalent throughout the industry, hypervisors offer the opportunity to 

restrict the attacker’s access to the base of the software stack. Since typically the 

number of vulnerabilities is directly related to the number of source lines of code 

[27], this would allow tight control of the hardware and allow operating system 

designers to build successive layers on a secure base of trust. The small size of the 

1	
   2	
   3	
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hypervisor also opens the door to formal reasoning concerning its security 

properties [39].  Unfortunately, these ideas have yet to be cohesively integrated 

and their impact upon security quantified. In the sections that follow we explore 

the building blocks that are available for improving cloud security and assess 

them on the basis of their performance impact, ability to reduce the attack 

surface, detect known and zero-day threats, resolve detected threats, and increase 

attacker workload by denying either surveillance or persistence. 

 

2.1 Threat Model 

The security implementations analyzed in this chapter and the thesis as a whole, 

address the threat model for intrusions employing remote control outlined in 

Figure 5. Attacks involve several steps that begin with surveillance to determine 

which vulnerabilities exist [40]. Vulnerabilities may revolve around specific 

people, processes, organizations, and network infrastructures.  Based on the 

available vulnerabilities, the coordinated attack involves multiple initial touches 

on target networks that develop points-of-presence through some form of implant 

[41]. The initial touches may use remote user- or kernel-level exploits [42], 

insiders with legitimate user-level accesses [43], theft of legitimate credentials 

[44], supply chain interdiction [45], physical attacks at an end-point device [46], 

and a wide variety compromises based on radio frequency and infrastructure 

weaknesses. Development from the initial points of presence may involve 

privilege escalation [42], removing exploit artifacts, and hiding behavior [20]. 

On-going surveillance may involve obtaining a copy of the binary codes and 
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using reverse engineering [47,48] or fuzzing [49] to open additional attack 

vectors. The implants then persist for a time sufficient enough to carry out some 

malicious effect, obtain useful information, or propagate intrusion to other 

systems [50].  

 

 

Figure 5 - Threat Model 

Unlike the time to execute an exploit, the time spent in surveillance and 

persistence may range from minutes to months or even years depending upon the 

desired effects. Moreover, the presence of an intrusion may never be detected by 

network or on-host defenses but instead may be recognized only indirectly in a 

deviation from expected behavior, or may be derived from outside sources. 

 

Nevertheless, each cloud security technique represents an integral building block 

in the multilayered defense of the cloud. Malware detection and prevention 
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systems are the initial line of defense in preventing an attacker from gaining a 

foothold on a cloud. The secure hypervisors present a hardened code base that 

restricts access to hardware to all, but the most privileged operations. Lastly, 

cloud resilient solutions are present to protect against the unknown exploits, 

which may allow an attacker to operate on a cloud indefinitely. 

 

2.2 Malware Detection and Prevention 

Malware detection was one of the first techniques implemented after the 

introduction of hypervisors. To achieve this, researchers paired the proven 

technology of Intrusion Detection Systems (IDS) with the ability to hide in a 

virtual machine. In this scenario, the IDS still performs the same function of 

identifying patterns of malicious behavior on a system that may be compromised 

[51]; for example a proof of concept based on the Snort IDS successfully 

prevented a Distributed Denial of Service (DDoS) attack [52]. This 

implementation installed a virtual machine that ran Snort on top of the VMware 

hypervisor to monitor network traffic to all guest virtual machines attached to a 

virtual switch. Once running, the IDS dealt with DDoS attacks in two steps: 

Initially, attacking computers were blocked by Snort; subsequently, the virtual 

server automatically moved the application under attack to a new location in the 

cloud. This demonstrated that an IDS can function inside the cloud; however, the 

implementation was just as vulnerable to zero-day attacks as non-virtualized 

IDS’s [53]: attacks were missed due to IDS configuration and the failure of 

signatures to detect new attacks. 
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The Hybrid Virtual IDS is a solution that leverages the strengths of the cloud and 

improves upon the previous Snort implementation [54]. The approach combines 

resilience of a virtual IDS and the versatility offered by a host based IDS. This is 

possible through the use of integrity checking [55] and system call trace analysis 

[56]. Integrity checking is a static detection process in which a changed file is 

compared to a gold standard to determine if the change is malicious. System call 

trace analysis dynamically flags anomalous system call behavior as potentially 

dangerous. These two approaches are implemented inside of a virtual machine to 

provide an isolated environment. A custom hypervisor is then used to ensure the 

isolation between all virtual machines. To provide functionality to the IDS, the 

hypervisor has hooks that allow the inspection of other guest virtual machines 

running on the hypervisor. This allows the hybrid virtual IDS to remain isolated 

from other running virtual machines, while still allowing it to access data from the 

virtual machines it is monitoring. This technique performed well in testing 

conducted by the authors of the Hybrid Virtual IDS, but returned unexpected 

performance results: as the IDS decreases the length of time between inspecting 

of the monitored virtual machine, the workload processing time did not increase 

linearly as to be expected and instead became erratic. The cause of this erratic 

performance is open to additional research. 

 

With the introduction of a hypervisor and a virtualized IDS, it was only a matter 

of time before firewalls were moved into the cloud. One of these virtual firewall 
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implementations is VMwall [57], which runs in the privileged virtual machine 

that controls the Xen hypervisor and uses virtual machine introspection [58]. This 

is the process of inspecting the data structures of a separate virtual machine. To 

enable this functionality, the Xen hypervisor has added hooks that capture all 

network connections created by a process. The data pertaining to these 

connections is then passed to VMwall for analysis. The connection is either 

allowed or blocked by using a whitelist (a list of approved processes and 

connection types). To deter false data during introspection, kernel integrity 

checking [59] is used to verify the state of kernel data structures in the guest 

virtual machines. This is necessary, as the primary method of inspecting traffic is 

through these data structures; malicious modification may compromise the 

monitoring of traffic. However, VMwall may be vulnerable to hijacking of a 

whitelisted process or an already established connection. The only method of 

detection against the compromise of an approved process is through the 

checksumming of the in-memory image of that process. This is performed by 

ensuring that the hash of a process has not changed from that of one contained in 

the whitelist. Due to the performance impact of hash analysis, this method is 

generally not implemented. Hijacking an established connection can be partially 

prevented through time outs associated with kernel rules contained in the 

whitelist. To fully prevent this type of compromise, deep packet inspection could 

be used, but is not currently employed by VMwall. Importantly, the employed 

introspection techniques cause a minimal performance impact: the additional 

overhead is 7% for file transfers from hypervisor to guest and 1% for file transfers 
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from a guest to the hypervisor. Added overhead for Transmission Control 

Protocol (TCP) and User Data Protocol (UDP) connections are negligible; 

increases are measured in microseconds. 

 

An alternative approach to detection techniques, like VMwall and hybrid IDS, are 

prevention methods. One security appliance that performs prevention is 

Malaware, which is designed to prevent malware that tailors attacks upon 

detection of a hypervisor [60]. To deter this initial identification of a virtual 

environment, a signature based method is used. In this instance, a signature is an 

instruction that should not be executed by an unprivileged process. As an 

example, when a process such as Red Pill attempts to run the SIDT instruction, it 

will be flagged as malicious. However, as the authors of Malaware have stated, a 

signature based approach is only effective against known types of malware. To 

combat zero-day threats, two behavior based approaches that utilize dynamic 

analysis are proposed [61]. This could be accomplished by first learning the 

current process and its page table base address. With this, it is possible to check if 

the current instruction register belongs to the process’ code pages. If this mapping 

does not exist, Malaware could flag the process as malicious. The second dynamic 

analysis method suggested is taint tracking. Changes to the system, otherwise 

known as taint, are created, when a process modifies any code or memory 

location. Accordingly, when taint is created in monitored locations, the offending 

process is immediately flagged as malicious. An added benefit of taint tracking is 

it defeats malicious code that has been transformed to look harmless, also known 
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as code obfuscation [62]. Once loaded into a monitored region, the obfuscated 

code is immediately marked as tainted and the associated process is flagged as 

malicious. Unfortunately, only the signature based piece of the detection has been 

implemented and no data relating to added overhead has been collected. However, 

the initial detection results were promising with a malware detection rate of 76%. 

Lastly, it is important to note that techniques that alter known memory states, 

such as address space layout randomization (ASLR) may increase the difficulty of 

this type of taint tracking [63]. 

 

Another prevention method, guest view casting [64], moves malware prevention 

from the guest virtual machine to the hypervisor. This approach reconstructs the 

data structures of the guest for analysis at the hypervisor level. This is achieved 

by translating guest virtual memory addresses to physical memory addresses, then 

reading the raw data from the guest’s virtual hard drive. The reassembled state in 

the hypervisor can then be compared to the guest’s state using viewing tools such 

as Windows Task Manager and memory dump to display all processes in 

memory. The presence of discrepancies between the two states may indicate the 

existence of malware in the guest. The authors have labeled this method of 

searching for discrepancies between states as view comparison-based malware 

detection. An outgrowth of this method is to use anti-virus software to scan the 

guest’s state from inside of the hypervisor. The use of anti-virus outside of the 

guest shows that it identifies malware more effectively than anti-virus running 

inside a virtual machine. Additionally, performance of anti-virus is improved 
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outside of the virtual machine. The primary drawback to this approach is the 

assumption that the hypervisor has not been compromised. The authors agree that 

malicious code that targets the hypervisor [65] can compromise their approach. 

 

Although detection and prevention are important, the last two decades have 

demonstrated that it is unlikely that malware can be eliminated completely [66]. 

Security researchers in an attempt to understand these attacks have to rely on 

system logs that lack integrity [67] and are often incomplete [68]. The ReVirt IDS 

[69], which runs on UMLinux [70]; was created in an attempt to improve upon 

these inadequacies. This is accomplished by creating logs for all of the relevant 

system level information needed to replay what transpired at an instruction by 

instruction level for a specific virtual machine. This allows administrators to 

determine all the relevant information pertaining to an attack. The overhead of 

performing these functions is 13-58% for kernel tasks and up to 8% for logging 

tasks. 

 

2.3 Secure Virtual Machine Managers 

Hypervisors have afforded researchers with new security capabilities. However, 

the hypervisor itself has come under attack as a way of gaining control of a 

system [71]. This has led to the introduction of Secure Hypervisors that reduce the 

attack surface and increase reliability by reducing the number of lines of code 

[27]. sHype [72], designed by IBM, increases security by taking the idea of 

control flow enforcement first seen in SELinux [73] and applying those controls 
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on information flows between virtual machines through a mandatory access 

control model. Using intricate security policies; unfortunately, these make it 

difficult to guarantee security and can be over 50,000 lines of code [74].  To 

remove this level of complexity, sHype affords the same control flow protections, 

but at the hypervisor level and without the need of a policy administrator. These 

information flows are maintained through the use of a reference monitor that 

decides what connections to accept and deny between virtual machines. The 

sHype approach creates a flexible architecture, which allows it to support many 

different security modules [75]. This is accomplished in around 11,000 lines of 

code; SELinux alone is over 85,000 lines of code. 

 

The performance impact of sHype enforcement policies is less than 1% [72]. 

However, sHype’s primary shortfall is that it does not completely protect against 

unauthorized transfer of information between two virtual machines that are not 

allowed to share information. Figure 6 illustrates the problem: nodes A, B, and C 

represent three different virtual machines and all are connected to a reference 

monitor.  
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Figure 6 – Example Covert channel 

	
  

Virtual machines A and B are not allowed to share information, but both are 

allowed to share information with virtual machine C. A covert channel is created, 

when virtual machine C acts as an intermediary and passes information between 

A and B. In this case the reference monitor would not intervene, as it only sees 

information being transferred from A to C and from C to B.  Fortunately, the 

addition of a Chinese wall (communication rules) can be added to sHype to 

protect against this covert channel [76]. In this case, the rule would only allow 

two of the three virtual machines to run at any one time. However, this method 

has the drawback of causing a decrease in performance of up to 9.1% [77].  This 

performance impact can be mitigated by performing Chinese wall policy checks 
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at virtual machine creation and then caching these decisions. Since, policy 

changes are infrequent, this configuration reduces the performance impact to less 

than 1% [78]. 

 

A different direction from control flow enforcement is used in the noHype 

hypervisor [79].  This minimalist approach removes as much as possible from the 

hypervisor; unfortunately, no published numbers for lines of code are available. 

However, the first prototype was based on a stripped down version of Xen 4.0; 

implying that it falls somewhere less than 1.6 million lines of code [80]. The code 

count was reduced by shrinking the size of the hypervisor by following four rules. 

First, noHype pre-allocates processor cores and memory to virtual machines. This 

allows the virtual machine to control its own hardware, which improves 

performance. Second, each virtual machine is assigned its own I/O device. Being 

in the cloud, it is assumed that these virtual machines only need network interface 

cards (NIC). The issue here is that servers have a limited number of NICs. 

Thankfully, newer NICs take advantage of Single-Root I/O Virtualization [81], 

which allows them to present themselves as multiple NICs. Thus, each virtual 

machine on a server is able to receive its own NIC, even if there are more virtual 

machines than NICs. Third, noHype provides the user with a predefined guest 

virtual machine in order to control the discovery of hardware. This also prevents a 

user from uploading a malicious guest virtual machine, which could attack the 

hypervisor. Lastly, noHype avoids indirection that occurs through the creation of 

virtual cores and memory, since cores and memory are assigned directly to each 



 

	
   31	
  

virtual machine. These four principles were tested against a standard Xen 4.0 

install and startup time was reduced by 1% in the noHype implementation. 

However, noHype loses the ability to perform any introspection of the guest 

virtual machines as the hypervisor is limited in functionality. Thus, a virtual 

machine in the noHype cloud could become infected without noHype being aware 

of the infection. 

 

Another popular feature of the cloud is live migration of virtual machines [74]. 

This can be seamlessly accomplished with little downtime thanks to 

virtualization. However, migrations lose the states maintained by stateful firewalls 

[82] and IDS’ [83]. These states can be maintained using a network security 

enabled hypervisor (NSE-H) designed on top of the Xen hypervisor [84]. This 

builds on the concepts used in secure hypervisors, but adds support for secure file 

transfers. The performance impact of this method is measured in downtime, 

which is the time a virtual machine is not available during transfer. The cost of 

securing these migrations is up to a 15% increase in downtime versus downtime 

of non-secure transfers [85]. This downtime occurs for two reasons when 

maintaining the security context of the virtual machines being migrated. The first 

is the additional time needed to securely copy a virtual machine’s memory space 

from one host to another. The second is the NSE-H security additions, as they are 

using additional resources on the system. 
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2.4 Cloud Resilience 

An often over-looked aspect of cloud computing is Resilience, defined as the 

ability for a system to recover and continue to provide services when a loss of 

hardware or software occurs [86]. One such system, Cloud Resilience for 

Windows (CReW) [87], expands the idea of resilience to the security domain 

through the use of strong security in guest virtual machines [88], and 

introspection [89]. Implementation is on top of the 270,000 plus lines of code that 

comprise the kernel-based virtual machine hypervisor [90]. This has enabled 

CReW to effectively prevent attacks from some rootkits and repair any damage 

they may have caused, but at a cost to performance as the number of virtual 

machines increases or security level is raised. At a strict level with three virtual 

machines, CReW adds ~48% increase in time needed for CPU tasks and ~279% 

increase in time required for I/O related tasks. For the paranoid setting, CReW 

adds ~116% increase in time for CPU related tasks and adds ~347% increase in 

time for I/O related tasks [87]. 

 

A technique that builds upon the ideas presented in CReW and supports other 

operating systems is that of hypervisor-based efficient proactive recovery [91]. 

This approach makes the assumption that no matter what defense is implemented 

on the cloud, a machine will eventually be maliciously compromised or taken 

offline. Thus, after particular failure conditions are met, the guest virtual machine 

is refreshed from a gold standard. A prototype of these concepts was developed 

using a modified Xen hypervisor [92].  Testing has shown there is a balance 
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between throughput and availability. Thus, a user of this method can choose 

between lower throughput and higher availability or higher throughput and lower 

availability when faults occur. 

 

The Bear operating system is a minimalist implementation that builds resiliency 

on top of a secure hypervisor [25]. A key design choice is the strong enforcement 

of separating core functionality into four layers, which is typical of modern micro 

kernels, like the MINIX operating system [93]. Importantly, the attack surface is 

reduced with a shared code base (>50%) of 10,903 lines of code shared between 

the Bear Hypervisor and Kernel. The size is attributable to a small custom 

hypervisor and small custom kernel. Resiliency is derived from non-

deterministically refreshing the virtual machines on the hypervisor to a gold 

standard after a period of time. This refresh is done by starting a second virtual 

machine from the known valid state and then transferring functionality to it, all 

while simultaneously tearing down the first virtual machine. By using this 

method, control is seamlessly transferred between virtual machines and without 

an impact to performance. Also, any known or zero-day malware present on the 

torn down virtual machine will not be present on the newly started virtual 

machine. 

 

2.5 Comparative Analysis 

Table 1 presents a summary comparison, of the approaches based on reduction of 

the attack surface, prevention of zero-day threats, and overhead. The “Reduces 
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Attack Surface” category shows that all of the technologies other than sHype and 

Bear rely on a large code base.  

Cloud Security 
Implementation 

Reduces 
Attack 
Surface 

(lines of code) 

Malware 
Detection 

Mitigates 
Zero-Day 
Threats 

Added 
Overhead (%) 

Malaware > 725K yes no no data 
Guest View 

Casting 
> 1,600K yes no Reduced up to 

70% 
Virtual Snort > 300K yes no no data 
Hybrid IDS > 300K yes no ~4-36% 

VMwall ~ 1,600K yes no 1-7% 

ReVirt ~ 1,800K no yes 8-58% 

NSE-H > 1,600K no no 15% 

Shype ~ 11k no no < 1% 
Shype with 

Chinese wall in 
Critical Path 

>  1,600K no no 9.1% 

Shype with 
Chinese wall 

outside Critical 
Path 

> 1,600k no no < 1% 

NoHype < 1,600K no no Reduced up to  
1% 

CReW > 270K yes yes ~48-347% 
Hypervisor-

Based Proactive 
Recovery 

~ 1,600K yes yes ~8-12.7% 

Bear ~ 11k Not 
Applicable 

yes < 1% 

Table 1 - Comparison Summary of Surveyed Systems 
	
  

This poses a concern, as demonstrated by the authors of “Reliability Issues in 

Open Source Software”, who have shown that errors occur at a rate of .09 defects 

per thousand lines of open source code. This problem is worse for closed source 
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systems, with .57 defects per thousand lines of code.  Although the numbers will 

vary with code base naturally, this result that indicates Xen will have 144 defects, 

KVM 25, UMLinux 162, sHype and Bear each present a single defect. An 

interesting comparison was provided between open source software and closed 

source software. Due to the partial unintended release of 300,000 lines of 

VMware kernel code; the code could contain up to 171 defects, which is more 

defects then a full install of UMLinux. Obviously, sHype and Bear systems are a 

bare minimum install and have less functionality when compared to the other 

hypervisors. This has led to the sHype architecture being ported to the Xen 

hypervisor by the authors of “Building a MAC-Based Security Architecture for 

the Xen Open-Source Hypervisor”, which has the net effect of increasing 

functionality and potential number of defects. The key takeaway is that a small 

code size and open source distribution are desirable to prove a system to be 

reliable and secure. However, closed source systems, which are outside of the 

purview of this article, do exist and provide similar security features. Two such 

commercial hypervisors not reviewed are Citrix XenClient and HyTrust. 

 

After evaluating each system on its abilities to perform “Malware Detection” and 

“Prevents Zero-Days”; there were two clear outliers. Malware detection and 

prevention methods primarily protect against known threats, because of their use 

of whitelists and signatures. However, ReVirt is the outlier in this category, as it 

provides capabilities to remove zero-days; unlike its counterparts, it has no ability 

to detect malware. Secure hypervisors restrict access to the hypervisor but 
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generally provide no malware detection abilities or zero-day prevention. Lastly, 

resilient systems such as CReW and hypervisor based proactive recovery have 

shown promising results in both categories. The model of whitelists and 

signatures is replaced with restoration upon detection of anomalous system 

behavior. Thus, both known malware and zero-days are removed from the system 

when it is restored to a valid state. Resilient systems do not prevent the initial 

compromise from known threats, unlike malware prevention and detection 

systems. The outlier in this group is Bear, which makes no attempt to check for 

anomalous behavior. Instead, it assumes the system will eventually be 

compromised and therefore refreshes the system non-deterministically. This has 

the same end result of removing any known or zero-day attacks that may be 

present, but also invalidates surveillance and prevents persistence. Nevertheless, 

the effectiveness of resilient systems warrants further research. 

 

The final category of “Added Overhead” is important, as no technique should 

overly impact system performance. Both secure hypervisors and malware 

prevention and detection schemes can minimally impact and in some cases 

improve performance. The larger resilient prototypes such as CReW and 

hypervisor proactive recovery have not yet reached this level of performance. 

Bear however, has had a negligible impact on performance when refreshing 

virtual machines. Research into future resilient system implementations should 

aim to maintain the performance levels set by intrusion detection and prevention 

systems, secure hypervisors, and the Bear operating system. This can be achieved 
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by leveraging the proven practices of either adding functionality to the hypervisor 

as seen in Guest View Casting or reducing the hypervisor foot print as 

accomplished by NoHype and Bear. Once this performance requirement is met, 

further capabilities can be added to resilient systems, which allow for the creation 

of a new cloud security architecture. 

 

2.6 Related Fields of Work 

One field of study that has not been included in this survey is the idea of trust [94] 

in regards to the unauthorized access of data. One approach to handle trust in data 

security is that of security labels in the cloud [95]. The goal of this approach is to 

isolate customer virtual machines from each other to prevent data leakage across 

virtual machines. This work is an enhancement of a trusted hypervisor that 

extends trust to network storage [96]. In regards to privacy, customers are 

concerned that their personal information will be leaked to those who should not 

have access to it. A current solution to this problem is the use of encryption with 

access control [97]. Using public key cryptography in the cloud, the user can be 

sure that their data is safe and only they have access to it. 

 

2.7 Summary 

All of the techniques reviewed in this chapter have produced gains in making 

cloud computing more secure. Most of the solutions strive to race to the bottom of 

the software stack to combat known risks, rather than unknown zero-day risks. 

Moreover, it is currently left up to the cloud provider to pick from a grab bag of 
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techniques to secure their infrastructure, which often times reduce performance in 

a time sensitive environment. This has led to a diverse set of approaches in cloud 

security, each with its own goals.  

 

However, many of these same methods have increased the size of the code base of 

both the kernel and hypervisor. According to Pandey et al., this represents a real 

risk in that additional bugs may be present in the code. These same bugs may lead 

to real vulnerabilities, which coupled with the large attack surface of the system 

provide the perfect environment for ROP attacks. All of this is only made worse 

by the homogeneity of the cloud running thousands of copies of the same virtual 

instance. 

 

Thus, a different approach is needed that combines the most successful techniques 

to leverage multiple cores with hardware virtualization security in new ways. A 

new cloud infrastructure should follow the example of noHype to minimize the 

hypervisor attack surface. From there to break the monotony of guest 

virtualization, the standard kernel should be broken into smaller pieces that 

provide individual services. These smaller VMs can then be sandboxed through 

hardware isolation in a manner that is similar to sHype. By controlling access and 

information flow to these systems, anomalies due to malicious behavior can be 

quickly isolated and resolved. By doing all of this, a new utility virtual machine 

architecture would be created that increases attacker workload and reduces the 

attack surface used in ROP attacks.  
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Chapter 3 – Symmetric Multiprocessing 

The utility virtual machine architecture requires the linchpin of modern 

computing that is x86 symmetric multiprocessing. These multiple cores are 

required for static assignment to UVMs to provide both security and timely 

performance. Therefore, a solid understanding of these technologies is critical not 

only for this work, but also to any developer entering the field.  

 

Unfortunately, the complexity associated with discovering, enabling, using, and 

virtualizing multiple cores has created a paucity in the available documentation, 

transferable knowledge, and readable code exemplars. This chapter describes our 

experience in overcoming these hurdles in the design of a from-scratch, multi-

core operating system – Bear – for utility virtual machines. In particular, 

intricacies involved in the development of a multi-core micro-kernel with an 

integrated multi-core hypervisor are traced. By exploring the implementation 

details, from bootstrapping through core virtualization to process scheduling, this 

paper aims to fill the knowledge gaps, highlight potential pitfalls, and introduce 

multicore development in a concise start-to-finish exemplar. 

 

3.1 Introduction 

Sadly, it has become increasingly difficult for systems programmers and 

developers to leverage the full features of x86-64 technology effectively. For 

example, the documents containing the information for finding, bootstrapping, 

and operating multiple cores are spread across multiple separate large manuals 
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including, the 1,056 page Advanced Configuration Power Interface (ACPI) 

Specification [98], the 97 page Multi-Processor (MP) Specification [99], and the 

3,463 page Intel or 664 page AMD Software Developer’s Manual [5,100] 

respectively. These specifications are in turn maintained by a multitude of parties, 

each with their own vested interests. For example, the MP Specification written 

by Intel was deprecated in favor of ACPI, which was written by a consortium of 

computer hardware and software manufacturers. The ACPI specification was then 

absorbed into the Intel written 1,084 page Extensible Firmware Interface (EFI) 

Specification [101]. A similar consortium of hardware and software 

manufacturers soon absorbed the EFI Specification into the 2,637 page Unified 

Extensible Firmware Interface (UEFI) Specification [102]. Fortunately, each 

newer specification is required to be backwards compatible with any of the older 

specifications to support legacy specifications. This limits the reading material for 

an entry level SMP programmer to the 5,280 combined pages of the MP 

specification, ACPI specification, Intel manual, and AMD manual. Unfortunately, 

Intel and AMD add to this level of complexity with their x86 chips, which support 

many operation modes, be it through legacy Port I/O, Memory Mapped I/O, or 

Model Specific Registers. These backwards compatibilities sometimes have a 

peculiar set of consequences. 

 

Recently, the most significant problem for X86-64 processors, stemming from 

backward compatibility, resulted in a privilege escalation attack that gives an 

adversary full control of the system [103]. In this example, the enduring backward 
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compatibility concerns the ability for the processor to move internal memory 

mapped I/O control registers. This feature was provided so that the processor 

could move its own registers to a new memory location if software was already 

using the same memory address; a valuable capability when x86 processors are 

operated with 32-bit addressing and virtual memory is limited to only 4 GB. In 

practice, with the introduction of 64-bit addressing (x86-64), the potential for 

overlap rarely occurs since virtual memory was expanded to 256 TB; however, 

the feature to move the processors memory mapped I/O registers remained in 

place. This alone was not a security vulnerability, until the introduction of a new 

layer of processor operation and security, that operates below the kernel and 

hypervisor, was introduced: This layer -- the system management mode (SMM) 

[100] -- has control over the underlying physical hardware of the system, for 

example, the processor cooling fans. SMM is accessed and configured through 

memory mapped I/O, but access to it is heavily restricted through specialized x86-

64 instructions. Unfortunately, these instructions and restrictions can be 

completely bypassed by an attack by using the ability of the processor to move its 

internal memory mapped I/O addresses to memory: moving them to overlap the 

memory reserved for SMM. Thus, an attacker can gain control of the system, 

using less privileged processor memory mapped I/O registers, to read and write 

directly to SMM.  

 

This example, the volume of the combined specifications, and the complexity of 

hardware support for security -- available through multi-core isolation, 
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virtualization, and 64-bit paging and protection structures -- virtually guaranties 

that systems designers must operate behind a impenetrable veil of interrelated 

constraints. Consequently, many developers reach only a superficial level of 

understanding and then abandon the more sophisticated concepts, relying instead 

upon existing implementations associated with monolithic operating systems, 

such as Linux [104] or hypervisors such as Xen [1]. This is particularly true of 

research operating systems that utilize only the most basic processor support 

[26,105,106].  

 

This paper redresses these shortcomings by providing a complete path to 

multicore via an all-in-one description of a minimal, virtualized multi-core system 

composed of a micro-kernel with an integrated hypervisor. The description uses 

well-known implementation techniques, to focus attention on the use of the 

underlying architectural support. For example: cores are statically partitioned 

among virtual machines, each virtual machine runs a single micro-kernel, each 

microkernel schedules processes round-robin across cores owned by the virtual 

machine and mutual exclusion of multiple cores from the scheduling queue uses a 

single global lock (similar to early versions of Linux). These design choices can 

readily be improved and optimized using well known techniques that are 

unrelated to the underlying hardware concepts. Although reasonably 

straightforward, the design performs surprisingly well when compared with 

Fedora, Ubuntu, and Xen; mature systems that have undergone hundreds of man-

years in development and optimization. This can be directly attributed to 
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extensive use of Intel 64-bit hardware mechanisms employed through their 

recommended implementation methods. 

 

3.1.1 Basic Concepts 

Basic Input/Output System (BIOS) [107] – The BIOS constitutes firmware 

installed on a system that is the first code to run when the system is powered on. 

The BIOS is responsible for initializing all of the core hardware components (i.e. 

VGA, Network, Processor Cores, Memory, etc.) into a known good starting state, 

specified by the hardware vendor. The BIOS specification for multicore 

processors, detailed in the Intel Developer Manual [5] states: “The MP 

initialization protocol defines two classes of processors: the bootstrap processor 

(BSP) and the application processors (APs). Following a power-up or RESET of 

an MP system, system hardware dynamically selects one of the processors on the 

system bus as the BSP. The remaining processors are designated as APs.” Upon 

completing initialization the BIOS loads the Master Boot Record (MBR) from 

either a physical hard drive, disk, or memory disk (RAMDISK) transferred over 

the network. Once loaded the BIOS turns execution over to the BSP, which starts 

execution at the beginning of the loaded MBR. 

 

Master Boot Record (MBR) [108] – The MBR emerged with the PC DOS 2.0 

system in 1983 and corresponds to the first 512 bytes of code loaded from disk by 

the BIOS; it is subsequently executed by the BSP. The MBR is restricted to 512 

bytes in size, an historical artifact associated with dividing hard drives into 
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cylinders, heads, and sectors (CHS) for addressing [109]. It is important to know 

that the MBR must conform to this addressing scheme and that it uses CHS to 

load the next 31.5KB from disk, 512 bytes at a time. The next blocks of code 

loaded by the MBR, shall refer to as the stage one and stage two bootloaders; their 

functionality and purpose will be discussed at length in this paper. Over the years 

the MBR has become a standard element of modern personal computers and thus, 

while not discussed further here, it is still an important legacy component of 

modern computer systems.  

 

Bootstrap Processor (BSP) – The BSP, initialized by the BIOS in a 

multiprocessor system, is the one and only processor core on a multicore 

processor with the “IA32_APIC_BASE Model Specific Register (MSR) set” [5]; 

this flag signifies the core that is the sole processor to begin execution. The BSP 

begins execution in 16-bit real mode (explained below) at the start of the MBR. In 

this paper the system described runs on an 8-core Intel i7 multicore processor. 

Thus, throughout the paper, the standard term BSP is used to refer to the core that 

was designated by the BIOS as the sole startup processor core.  

 

Application Processor(s) (AP) – All other processor cores on the system “have 

the IA32_APIC_BASE MSR cleared” and are known as the AP cores [5]. These 

AP cores are initially placed by the BIOS into a HALT state [99]. They can only 

be used by the operating system after the BSP has made the necessary system 

configurations, and subsequently signals each individual AP to begin execution. 
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As with the BSP, this paper uses the standard term AP to describe any of the non-

BSP cores on the system. 

 

Symmetric Multiprocessing (SMP) – Linking the BSP with a set of identical APs 

in a “tightly-coupled system where some or all of the system’s memory and I/O 

facilities are shared” [110] is the basis for an SMP system. On x86 systems this 

coupling is provided by a system bus that allows the BSP and APs to access 

memory and I/O, as well as exchange interrupts [99]. The main line of 

communication between cores occurs through inter-processor interrupts delivered 

using an Advanced Programmable Interrupt Controller (APIC), each BSP and 

APs has its own, dedicated local APIC. 

Advanced Programmable Interrupt Controller (APIC) – In general, the APIC 

provides both interrupt routing and redirection between cores;  this was not 

possible with earlier interrupt controllers such as the Intel 8259 Programmable 

Interrupt Controller (PIC) [111]. SMP is enabled when the BSP’s local APIC 

generates a start signal to each APs local APIC along the shared system bus [99]. 

Although, inter-core interrupts can also be used to support multi-threading (by 

allowing one core to inform another of Transition Lookaside Buffer shootdowns 

[112]), this paper focuses on SMP initialization as the micro-kernel design 

replaces shared memory with message-passing to enhance security.  

 

Input/Output APIC (I/O APIC) – The APIC architecture, as defined by Intel, is 

split between two components: the Local APIC associated with each core, and a 
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discrete I/O APIC [99]. The I/O APIC is used to re-direct interrupts generated by 

external peripherals, such as the network card or keyboard, to one of the cores on 

the system.  

 

16-bit Real Mode – Recall that, the BIOS hands the hands off control to the BSP 

in 16-bit real mode. This was the first memory-addressing mode instituted in the 

Intel 8086 processor [113]. It provides no support for memory protection, 

multitasking, or operating system ring levels: the BSP is provided with full access 

to the physical memory and hardware [5]. The importance of this mode is that the 

BIOS can still be accessed as long as the BSP operates in this mode. This allows 

the BSP to probe the BIOS for key system information, such as the amount of 

physical memory installed. 

 

32-bit Protected Mode – Protected mode was introduced with the Intel 80286 

processor [114] and featured a number of improvements over real mode. For the 

first time, operating system ring-level security was supported in hardware, as well 

as memory protection through segmentation; eventually paging and multitasking 

(through the Task State Segment Register) [5] were also added. Unfortunately, the 

memory protection bits on page tables in this mode only provided markings for a 

page to be read-only, read/write, user, or kernel. Thus, to enforce a full suite of 

MULTICS-style read/write/execute protections [29], segmentation must be 

combined alongside paging. In practice, segmentation has not been widely 
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adopted; consequently, this paper uses protected mode only to quickly transition 

into 64-bit long mode. 

 

64-bit Long Mode – Long mode was introduced with the AMD Athlon 64 line of 

processors [100] and was meant to address some of the limitations of protected 

mode; primarily, limited addressing allowing for only 4GB of virtual memory.  

Long mode is expandable up to 16 exabytes (1018) of virtual memory, though 

current processors are limited to 256 TB. Segmentation was completely replaced 

by 64-bit paging in long mode. A no-execute (NX) bit was also added to the 

paging structures to strengthen MULTICS-Style protections, however, it should 

be noted that these structures lack the ability to mark a page execute-only. 

 

Control Registers (CR) [5] – The BSP and APs each have their own set of CR’s, 

just as each has its own local APIC. Each core must setup its CR’s before using 

other processor functionality. This paper focuses on programming of CR0, which 

provides basic processor operating modes, CR3, which references the physical 

RAM address of the start of a page table in use by a core, and CR4, which 

provides advanced processor capabilities. For example, each core must set bit 13 

of CR4 to 1 if the Intel virtualization extensions (VT-x), are to be used to support 

a hypervisor. The complete layout of these three CRs is available in the Intel 

Programmer’s Manual [5]. 
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Model Specific Registers (MSR) [5] – MSRs are similar to CRs in that they can 

be programmed to enable various core functions in the system. Some MSR 

registers are set either by the system (for example, the BIOS sets the 

IA32_APIC_BASE MSR to designate the BSP) or they can be set by the operating 

system (for example, IA32_VMX_PROCBASED_CTLS2 MSR designates the 

virtualization controls for APIC Access Virtualization). Accesses to the MSRs are 

provided through the x86 rdmsr (read MSR) and wrmsr (write MSR) instructions. 

 

Memory, Paging, and Memory Management Unit (MMU) [5] – Physical 

memory constitutes all the Random Access Memory (RAM) installed in the 

system; It is initialized by the BIOS and information concerning its size, and the 

areas reserved for specific uses, can be obtained through the BIOS when 

operating in 16-bit real mode. Virtual memory is a conceptually much larger 

space that processes may utilize during their execution. Virtual memory addresses 

are translated into physical memory addresses, through page tables, by the 

memory management unit (MMU). An explanation of 64-bit paging and the 

associated structures is available in the Intel manual [5].  However, to understand 

this paper it is sufficient to understand how paging relates to SMP. In particular, 

to understand that the BSP and APs can each operate their own independent set of 

page tables, through manipulation of their own Control Register 3 (CR3), which 

signifies the base of a cores virtual memory. This paper introduces the concepts of 

recursive paging and a physical address frame allocator as mechanisms for 
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building these paging structures. Collectively, the ideas ensure that each core 

provides a unique page table per process. 

 

Virtual APIC (VAPIC) and APIC Access Virtualization [5] – Intel VT-x treats 

the APIC as a resource that must be protected from each guest virtual machine. 

This is achieved through a technique known as APIC Access Virtualization, 

which creates a virtual APIC (VAPIC) for each guest. When the guest accesses its 

VAPIC, the configuration of the hypervisor and virtual machine collectively 

determine whether a Virtual Machine Exit (VMExit) into the hypervisor should 

occur. VMexits, generated by the VAPIC, are central to an SMP enabled virtual 

machine and will be discussed in detail. 

 

Context Switching and Processor State Storage [5] – When the BSP or an AP 

switches from execution of a virtual machine into the hypervisor, the state of the 

general-purpose processor registers (rax, rbx, rcx, rdx, etc.) must be saved. The 

associated storage is created and provided by the hypervisor, so as to preserve the 

running state upon VMExit.  This is necessary so as to allow the hypervisor to 

either perform or deny any action taken by the virtual machine and to allow the 

hypervisor to resume execution of the virtual machine immediately after where 

the exit occurs. For example, if the virtual machine accesses its APIC to send an 

inter processor interrupt, the VAPIC will generate a VMExit, the hypervisor must 

then generate the associated inter processer interrupt for the virtual machine since 
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it is a normal part of SMP execution. The virtual machine is eventually resumed 

after the instruction that caused the VMExit.  

 

Extended Page Tables (EPT) [5] – Though not covered in this paper, EPT’s are 

integral to the performance of virtualization: they provide a means of translating 

what the virtual machines believes is a physical memory address into an actual 

address in physical memory by the hardware. This removes the requirement that 

the hypervisor translate every memory access performed by the guest virtual 

machine. EPTs also provide fine-grained memory access control by adding 

execute, read, and write bits, which when coupled with 64-bit long mode paging 

provides the full set of MULTICS-style protections [29].  

 

3.1.2 Overview 

To realize the Bear system presented in chapter 1, bootstrapping steps from 

power-on-reset to a running set of user-processes executing on top of the micro-

kernel are implemented. This overall process is outlined through abstract code in 

Figure 7 and begins when the MBR hand-off to the stage-one bootloader, 

operating on the designated BSP core (line 0).  
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Figure 7 - Overview of Steps Required for SMP Enabled System 

The stage one bootloader is a mix of 16-bit real mode, 32-bit protected mode, and 

64-bit long mode code. For this reason, it is compiled as its own flat binary to 

facilitate absolute jumps between these different memory-addressing modes. If it 

were compiled with ELF, the linker would interpret all jumps as 64-bit long mode 

jumps (ljmp). This would generate truncation errors as a 64-bit jump address 

would be cut in half for the 32-bit jump and cut to a quarter for the 16-bit jump 

address. The stage-one bootloader is also restricted to 512 bytes in size, so as to 

fit into one load block based on CHS loading. For these reasons it is written 

entirely in assembly code to keep it small (183 lines of code); however, it is 

sufficiently powerful to move the BSP from 16-bit real mode into 64-bit long 

mode. 

 

The stage-one bootloader handles all interfacing with the BIOS, which can only 

be accomplished in 16-bit real mode (line 1). It communicates with the BIOS to 

obtain a map of the underlying physical memory (line 2) and sets all of the 
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necessary CR and MSR bits for the BSP to enter 64-bit long mode and enable use 

of floating-point instructions. It then creates an initial paging structure, sufficient 

to support a stage two bootloader, written in C and compiled with ELF for 

maintainability, that operates in 64-bit long mode (line 3). With these tasks 

accomplished, the BSP will be running in 64-bit long mode and can initiate the 

stage-two bootloader (line 4); the system does not return to 16-bit real mode once 

it has entered 64-bit long mode.  

 

The BSP executing the stage-two bootloader, uses the information obtained by the 

stage-one bootloader regarding memory layout to implement a full 64-bit paging 

system with the full range of 64-bit read-write-execute memory protections 

afforded by the underlying processor architecture (line 5). The stage-two 

bootloader is also responsible for ELF loading the hypervisor into the paging 

system it has created (line 6). Once, these two tasks are accomplished the BSP can 

then begin execution of the hypervisor. 

 

In the hypervisor, the BSP will parse the ACPI tables (line 7) in order to configure 

its own local APIC (line 8) and the I/O APIC (line 9). The BSP also uses 

information in the ACPI tables to discover all of the remaining APs present on the 

system (line 10). The BSP’s local APIC can then be used to send IPI’s to wake 

the BIOS HALTED APs through their individually owned local APICs. The 

individual APs will then execute a small block of trampoline code that performs 

the necessary configurations to set each AP into 64-bit long mode and 
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subsequently enter the hypervisor. Once in the hypervisor, each AP must also 

configure its own APIC in the same manor as used by the BSP to configure its 

APIC. The APs then halt execution and wait to be assigned to a virtual machine 

by the BSP. This process effectively gives ownership of all the available cores on 

the system to the hypervisor. The BSP then finalizes any virtualization 

configurations, such as EPT creation, needed to create a virtual machine, and 

launches a virtual machine on the BSP. Using APIC Access Virtualization  (line 

11) and state storage created for the BSP and APs, the hypervisor is then able to 

assign a virtual machine to any number of APs (line 12). For simplicity, cores are 

partitioned among a fixed number of virtual machines statically; each virtual 

machine bootstraps an instance of the micro-kernel, the hypervisor intercepts the 

APIC boot IPI to assign additional processor cores to the virtual machine rather 

than bootstrapping an AP as earlier performed by the hypervisor. The process of 

joining an AP to an existing virtual machine consists of configuring it to the same 

state as the cores already executing the virtual machine, i.e. the cores that share 

the same EPT. The micro-kernel executing on the virtual machine may then use 

the cores it is given by the hypervisor to schedule processes (lines 14 & 15).  

 

3.2 Stage-One Bootloader  

Pseudo code, for the operations that must be performed by the stage one 

bootloader are shown in Figure 8.  Recall that the BSP always begins operation 

after handoff from the BIOS [107] in 16-bit real mode (line 0), as per the standard 

introduced by the Intel 8086 processor [113]. The BIOS starts the BSP execution 
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at physical address 0x7C00, where it has loaded a Master Boot Record (MBR) 

[115] from a disk, which, for the system described here, contains a memdisk 

loaded by PXE-boot. The sole purpose of the MBR is to load the stage-one and 

stage-two bootloader binaries from the memdisk through CHS loading. Since the 

MBR is a well-known industry standard, it is not described in detail here. Once in 

the stage-one bootloader, the BSP performs the necessary CR and MSR register 

configurations to quickly move into 64-bit long mode. This affords the system the 

full value of memory protections offered by 64-bit paging as early in the boot 

process as possible. The BSP operating in the stage-one bootloader also polls the 

physical memory through the BIOS in preparation for the stage-two bootloader to 

further develop the 64-bit paging system. Due to the intertwined and complex 

nature of 16, 32, & 64-bit boot code, it is explained in three parts: CPU 

configurations, physical memory profiling, and initial page table creations. Line 

number annotations are used to document where each touch point occurs in the 

pseudo code in Figure 8. The complete code for the stage-one bootloader can be 

seen in Appendix A.  
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Figure 8 - Stage-One Bootloader Pseudo Code 

3.2.1 CPU Configurations 

Recall that, inside the hardware of the BSP or AP cores reside CRs and MSRs that 

control the functionality of the core. Setting these registers correctly is critical for 

building an SMP hypervisor. Any misconfiguration will lead to unexpected 

behavior at later stages in the development process. To alleviate these challenges, 

the stage-one bootloader handles much of the implementation required to prepare 

the BSP for operation in the stage-two bootloader, hypervisor, and virtual 

machine running the micro-kernel. The complete list of the CRs, MSRs, and their 

associated fields mentioned in this section can be found in Appendix B. However, 

several registers are particularly critical to realize the pseudo code in Figure 8 and 

are discussed here. The first of which is setting the general-purpose stack pointer 

(rsp) for the BSP (line 1). 
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When starting in 16-bit real mode, the first register field set by the BSP is bit 0 in 

CR0: the protected mode flag. Setting this field to 1 allows the BSP to enter 32-bit 

protected mode (line 5). Not setting the bit will result in a system crash as the 

BSP attempts to transition from 16-bit real mode to 32-bit protected mode.  

 

Once, in 32-bit protected mode (line 6), the BSP configures CR4 (line 7) and the 

Extended Feature Enable Register (EFER) MSR (line 8) to enable support of 64-

bit paging. CR4 bit 5 –the legacy Page Address Extension (PAE) [116] bit -- and 

bit 7 -- allowing page tables to utilize the global flag – are both be set to 1. Page 

Address Extension (PAE) is an enhancement to 32-bit paging to support virtual 

addressing above 4 GB; 64-bit paging, supporting up to 256 TB, which is used in 

this chapter, succeeded it. However, the PAE flag must be set, per x86-64 

requirements, even if PAE is not being utilized. The global flag is a performance 

improvement associated with paging: Any page that is marked global cannot be 

evicted from the processor translation lookaside buffer. Utilizing global pages 

provides a speed up of critical operations, such as interrupt handlers. Next, the 

EFER MSR has bits 8 and 11 both set to 1: bit 8 enabling x86-64 long mode with 

64-bit paging and bit 11 allowing the page table to take advantage of the No-

Execute (NX) bit. Not setting bit 8 in the EFER MSR upon transition to 64-bit 

long mode has the same result as not setting bit 0 in CR0 when transitioning to 

32-bit protected mode: it crashes the BSP. Lastly, the BSP enables paging through 

the MMU by writing 1 to bit 31 (Paging Enable) in Control Register 0 (CR0).    
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Upon entering 64-bit long mode the BSP makes a few final configurations to 

support floating point and Streaming SIMD Extension (SSE) instructions (line 

16). This is accomplished by setting the monitor co-processor bit 1 and numeric 

error bit 5 in CR0 to 1. The co-processor bit enables the x86 wait and fwait 

instructions for handling floating point exceptions while the numeric error bit 

enables them. As a floating-point unit was not always present in early systems, 

the option to emulate them was present in many processors. However, with 

modern x86-64 systems that is not a problem and such the BSP must be told not 

to perform emulation by setting bit 2 in CR0 to 0. Lastly, the floating-point unit 

must be configured to allow and use SSE instructions. This is accomplished be 

enabling SSE exceptions through setting bit 10 to 1 in CR4 and enabling the use 

of fast floating-point unit switching by setting bit 9 to 1 in CR4. This is the last of 

the CPU register configurations made by the BSP 

 

3.2.2 Physical Memory Profiling 

Separate from setting registers is the detection of all the physical memory present 

on the system (line 2). Once found, it is used later by the stage-two bootloader to 

allocate a physical frame to a virtual memory page, which constitutes the basis of 

paging. Skipping this step means the hypervisor or micro-kernel cannot be loaded, 

no processes can be created with their own unique set of page tables, and SMP 

cannot be utilized as there is no micro-kernel or processes operating in their own 

memory space. Therefore, the industry standard of using BIOS interrupt 15 in 16-

bit mode is used [98]. This call returns the layout of physical memory in the form 
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of a flat memory model where the BSP could potentially directly access all of the 

installed physical memory [117]. When using x86-64 paging, the information 

returned from the call details if memory could be assigned to virtual address. The 

following commented GNU Assembly (GAS) loop shown in Figure 9 builds the 

physical memory map and implements line 2 in Figure 8  

 

 

Figure 9 – Bios Memory Map Creation Assembly Code 

After each interrupt call, data is loaded in back to back 192 bit blocks (Base 

Address, Length, Type, Compatibility Space). This data will later be accessed by 

the stage two bootloader to add pages to the initial page tables that are presented 

in the next section. 
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3.2.3 Initial Page Table Creation 

The initial tables are created in the 32-bit protected mode portion of the stage-one 

bootloader (figure 8 lines 9 & 10) and must meet two important conditions. First, 

the tables must map in the soon to be virtual to physical memory address 

translations the stage-one and soon to be stage-two bootloaders have been loaded 

in by the MBR. Second, the page tables must also be placed in a physical memory 

location that is also covered by a virtual to physical mapping that is contained 

within them upon their initial creation. These two requirements are necessary as 

the BSP will cease operation on absolute memory, which it has done up until this 

point [5], and instead use the MMU to walk page tables to translate virtual to 

physical addresses when paging is enabled. Importantly, if the former requirement 

is not satisfied the BSP will crash and the later will result in the BSP being unable 

to modify and grow its initial page tables. These two requirements are satisfied 

with three assembly loops that create a one to one virtual to physical address 

mapping of the first 2MB of physical memory, otherwise known as an identity 

map. Due to the critical fact that the BSP cannot proceed to 64-bit operation and 

eventually SMP operation for the system as whole without these page tables; an 

explanation of the three assembly loops used to create them follows. 
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Figure 10 - Initial Page Table Creation Assembly Code 

Before the first loop in Figure 10 above, the code begins by loading the base 

physical address of the Page Map Level 4 Table (PML4T) into the CR3 register 

(lines: 1-2). Next, the first loop ensures the entire 4KB frame of the PML4T is set 

to zero by using the rep and stosl assembly instructions, which writes 0s across 

the 4KB physical address space (lines: 3-6). Initialization of the PML4T is 

completed by the next loop. 
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As there are four levels of paging structures and the PML4T was previously 

created; the second loop takes care of creating the Page-Directory-Pointer Table 

(PDPT), Page Directory Table (PDT), the Page Table (PT) and configuring the 

top three levels (lines: 7-16). The loop will iterate three times (line: 8), starting at 

the address of the PML4T (line: 9), increment by 4KB size (line: 10), and create 

an entry in each of the top three level tables (lines: 11-13). Each entry has the 

read/write, global, and present bits set as seen in Figure 11. The PT, which 

contains page frame entries only, is configured in the third loop. 

 

 

Figure 11 - Four Level Page Table Layout (Intel Manual) 

The PT only contains page frames and not table entries, which is the reason it is 

initialized in a third separate loop (lines 17-25). To meet the two previous 

requirements mentioned earlier, the PT starts mapping from physical address 

0x0000 (line: 18). Also, note that all of the entries in the PT are marked 

read/write, present (lines: 22-25), and global. All 512 entries of the PT will be 
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initialized by this loop (line 20), which means the memory from 0x0000 to 

0x200000 is mapped (2MB). Furthermore, this is an identity map of virtual to 

physical memory. 

 

Once all three loops have run, a paging system as seen in Figure 12 below is 

created. It can be seen that the PML4T has one entry that maps to a PDPT, the 

PDPT has one entry that maps to a PDT, the PDT has an entry that maps to a PT, 

and lastly the PT has 512 entries that identity maps 0MB to 2MB of memory. 

Additionally, the two requirements set early in the initial page table discussion are 

met, as the bootloader and the initial page tables exist entirely between the ranges 

of 0MB-2MB. 
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Figure 12 - Initial Page Table Memory Layout and Mapping 

The last act of paging and discussion on the stage-one bootloader is to create a 

recursive entry inside of the initial tables PML4T (figure: 8, line: 11). As the 

memory manager created by the stage-two bootloader will make primary use of 

this entry, explanation on it is saved for the next section.  

 

3.3 Stage-Two Bootloader and Memory Manager 

The stage-two bootloader marks the transition to a full 64-bit long mode and the 

transition to using C code for the creation and management of complex systems. 

The end goal of which is to have a method in place that effectively ties available 

physical memory to virtual memory, and to lay the groundwork for SMP to make 
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use of the memory system to provide each process with its own memory space. 

Without an effective memory manager, SMP cannot be utilized by the system as a 

whole. The memory manager presented here manages physical addresses as 4Kb 

frames of physical memory through an array of frames. The virtual memory 

component is managed through a technique known as recursive paging. These are 

the physical and virtual memory management methods used in this system, but 

are not the only means of doing so. Thus, before embarking on a solution for 

memory management, it is critical to thoroughly weigh the pros and cons of this 

or any other system that is chosen. 

 

3.3.1 An Array of Structures 

The job of the memory manager is to maintain mappings from physical to virtual 

memory addresses. When new virtual addresses need to be mapped to underlying 

physical address frames, the system needs to know which physical address frames 

are in use and which are free. In this implementation, a frame array maintains this 

information. The frame array itself is comprised of an array of structures. 

 

Conventionally, a bitmap is used to maintain this information. A bitmap has a few 

advantages, including a low memory footprint and constant time to look up a 

given frame [118]. In the case of 4KB page size, bitmaps use 1 bit to represent 

32,768 bits of memory, which accounts for an overhead of 0.003%. However, this 

method also has a major drawback. With a bitmap, the only information that is 

stored about a given frame is whether it is free or not. An alternative is to encode 
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the information about the frames in an array of structures, with each structure 

representing one frame on the system. The C code for this structure is seen in 

Figure 13. 

 

 

Figure 13 - C Frame Array Structure 

This method maintains the benefit of constant lookup time for a given frame, and 

adds the capacity to store more information about each frame. For example, a 

constant time phys2virt physical to virtual address translation can be achieved by 

storing the virtual address in the corresponding structure for the physical frame to 

which that virtual address maps. In addition, it is possible to store the process 

identifier to which a frame has been mapped in the frame structure, allowing a 

comparison between the frame array and the page tables of a given process. This 

allows the micro-kernel to search for inconsistencies that would indicate some 

form of memory corruption. 

 

The cost of the additional information, of course, is a larger memory footprint. If 

n is the number of bytes available on the system, P is the size of a page, and s is 

the number of bytes stored in the frame array per frame, the frame array will 

occupy !
!
𝑠  bytes: !"

!!
  pages. In terms of the overall physical memory (which has 
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!
!
 total frames available) this corresponds to a fraction of !

!
 of main memory 

dedicated to bookkeeping. As shown in Table 2, for typical values of P, this 

percentage is still small, even with generous sizes for s. 

 
S P Overhead 

16 bytes 4096 bytes 0.4% 
8 bytes 4096 bytes 0.2% 

Table 2 - Overhead Cost of Frame Array 

Of course, the frame array is just like any other data on the system. It is stored on 

physical memory and accessed by virtual addresses. Unfortunately, since the 

frame array is the foundation of the virtual memory manager, initializing the 

frame array cannot use typical virtual memory management. This makes 

initializing the frame array a bit like changing a bike tire while riding the bike, 

which is only complicated by the need to grow the initial page tables to map the 

frame array. 

 

3.3.2 Growing the Initial Page Tables Through Recursion 

To grow the size of paged memory to accommodate the frame array, the operating 

system must write the physical address of some new unused physical frame of 

memory into a PT entry corresponding to the virtual address that the frame array 

is located at. The question is: how does the system write to that page table? 

 

The PT is an arbitrary 4k physical frame. In order to write to a location in 

memory, even a PT, software provides a virtual address that is translated through 

a PML4T, PDPT, PDT, and PT until finally the address whose page-size base is 
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stored in that specific Page Table entry is written. Therein lies the recursive 

problem of memory management. In order to write a PT, there must be a PT entry 

already written. The same is true at every level of paging structures. Naively, 

writing a set of paging structures before virtual memory is “turned on” by 

activating the MMU can solve this as seen in section 2.0.3. This provides a “base 

case” for the recursive problem that has been stumbled upon. In fact, simply 

growing this initial table does this very trick. However, this method leads to a fair 

share of problems. To illustrate this, imagine the following scenario: the system 

wants to set up a large and contiguous virtual memory region, for example the 

user’s heap. Ideally, the micro-kernel could simply walk along an array of 

physical frames, writing the address of free frames into a PT. When a PT runs out, 

the micro-kernel needs to write the address of the next physical frame into a PDT 

to serve as a new PT. However, with this method, that physical address must also 

be written into some PT entry. Which one? Answering that question is not trivial, 

and encourages dangerous solutions such as hard-coding the address of paging 

structures. 

 

Instead, a more streamlined approach known as recursive paging or self-

referencing page tables can be used. Recall again that each of these paging 

structures is simply a 4k frame of physical memory. In other words, the only thing 

that makes a PT any different from a random block of memory is that its address 

is stored in a PDT entry. Similarly, a PDT is defined only by its presence in a 

PDPT entry, and a PDPT only by its presence in a PML4T entry. Finally, a 
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PML4T is differentiated from a random block of memory only by the fact that its 

address is stored in the CR3 register. Recursive paging proposes the following 

idea: consider what would happen if the base address of the PML4T (the same 

one found in the CR3 register) is stored in the PML4T itself. Essentially, this is an 

entry in the PML4T that points back to the base of the PML4T. However, a PDPT 

is defined only as something whose physical address is stored in a PML4T. Now, 

the CR3 target is both a PML4T and a PDPT. Furthermore, a PDT is only 

something whose physical address is stored in a PDPT. Since the CR3 target is a 

PML4T and a PDPT, and it contains the physical address stored in the CR3 target, 

it can be deduced that the CR3 target is a PML4T and a PDPT and a PDT. 

Following a similar logic shows that the CR3 target itself can be essentially “cast” 

as any of the levels in the page table walk, including a PT and a physical frame. 

 

The capacity to “cast” the CR3 target as any level of the paging walk means that 

one can manipulate the virtual address to cause the MMU to “loop” over the self-

referencing pointer during one or more steps of its walk. For example, it is 

possible to “cast” the CR3 target as the 4k physical frame itself by setting the 

indices in bits 47-39, 38-30, 29-21, and 20-12 Figure 14 ALL to the index of the 

self-referencing entry of the PML4T. This allows the use the offset stored in bits 

11-0 to write to arbitrary locations in the PML4T. Similarly, it is also possible to 

“cast” the CR3 target as the PT by setting the indices in bits 47-39, 38-30, and 29-

21 all to the index of the self-referencing entry of the PML4T. Then, the index in 

bits 20-12 (the “Page Table Offset”) can be used to point to a given PDPT, which 
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will then be indexed by bits 11-0, allowing us to write to arbitrary addresses 

within a PDPT. 

 

 

Figure 14 - X86-64 Virtualization (Intel Manual) 

In other words, the self-referencing entry in the top-level paging structure allows 

automatic access to every paging structure linked to the currently active CR3 

target. The physical address of a PDPT does not need to be stored in a PT entry in 

order to write to it. Instead, the MMU can be “tricked” by “looping” through the 

self-referencing pointer, so that it treats the PML4T itself (which already stores 

the physical addresses of all active PDPTs) as the PT. 
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This solution is elegant and has many attractive features. In the case examined 

before, paging in memory for the user heap, the system can use any arbitrary 

frame for the new PT when it is needed. It still needs to write the physical address 

of that frame into a PDT entry, but it no longer needs to write the address in a 

second place: some other PT entry. Instead, subsequent attempts to write to that 

PT will “cast” the PDT as a PT, giving a valid virtual mapping to the new PT. 

 

The stage-one bootloader (figure 8 line 11) has provided the recursive page-table 

mapping in six lines of assembly code seen in Figure 15. Effectively, the last of 

the 512 entries in the PML4T (lines: 0-3) holds the base address of the PML4T 

itself (lines: 4-6). 

 

 

Figure 15 - Recursive Pointer Page Table Entry Assembly Code 

This recursive entry now allows the system to walk any level of the page tables 

using the C Macros seen in Appendix C.  

 

3.3.3 Mapping and Populating the Frame Array 

First, the frame array initialization function in Appendix D must calculate the 

total memory present on the system. This information is provided in the memory 
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map generated during 16-bit real mode, as described in section 3.2.2 of this 

chapter and is accessible thanks to the initial page tables created in section 3.2.3. 

The last entry in the memory map can be found by reading the value previously 

stored at 0x802. To offset correctly into the memory map stored starting at 0x804, 

the value is multiplied by the size of the structure seen in Figure 16. 

 

 

Figure 16 - C Bios Interrupt 15 Memory Map Structure 

By taking the last entry in the memory map and adding the length to the base, it is 

possible to calculate how many frames will be needed to store the frame array. 

Subsequently, it also possible to calculate how many paging structures (PTs, 

PDTs, & PDPTs) will be needed to address the frame array. The sum of these two 

amounts is the total number of frames needed to initialize the frame array. This 

number is used to find a block from the BIOS provided memory map that is big 

enough to hold the needed frames.  

 

The existence of the initial page tables makes it possible to start at the base 

address of the found block of memory and increment by 4KB frames to grow 

them. This is similar to the initial page tables that were created, except that any 
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virtual address may be chosen to map the frame array and the recursive pointer is 

used to map new tables themselves. The major benefit from the recursive pointer 

is that as page tables are exhausted, the next free frame can be used for the next 

paging structure. This has the effect of producing a continuous block of virtual 

memory for the frame array even if it is not physically contiguous. This is best 

illustrated in Figure 17, which shows the completed virtual mapping of an 

example frame array and its underlying physical memory. 

 

Figure 17 - Virtual Mapping of the Frame Array via Recursive Pointer 

This example frame array covers 4MB of virtual memory from address 

0x8000000 to 0x8400000. Circle 1 shows what happens first at the start of the 
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found physical memory block used to map the frame array. At this point the first 

frame is used to create a PT that is added to the initial page tables through the 

recursive pointer. Circle 2 shows that this PT then maps the first virtual 2MB of 

the frame array. At that point, all of the entries in the PT are exhausted. Thus, the 

next free frame is then used in circle 3 for adding another PT to the initial page 

tables through the recursive pointer. The PT in circle 4 then maps the final virtual 

2MB of the frame array. Thus, the frame array is mapped contiguously in virtual 

memory, but not contiguously in physical memory, as the recursive pointer 

provides on demand PTs as needed.  

 

Once the frame array is mapped, the initialization routine needs to populate the 

array so that it reflects the current state of the system. First, it looks through the 

BIOS memory map and uses the information about the blocks to populate the 

sections in the array that were reserved by the BIOS. Additionally, the system 

needs to walk its own page tables to mark the frames that have already been used 

in creating paging structures up to this point. These frames will be marked not 

only as taken, but the virtual address corresponding to the frame will be stored in 

the appropriate structure in the array. Note that this page table walk, vitally, 

includes walking through the recursive entry in the PML4T. This allows for all 

frames that are used for the paging structures themselves to be accounted for. 

With the frame array mapped and fully populated, the systems memory manager 

may use it with the recursive pointer to create new or grow existing page tables. 

The creation of new tables is a process management question, which this chapter 
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does not address, because just as there are multiple options for memory 

management, there are an even greater number of options for process 

management. 

 

This implementation solves the previous problem of running multiple processes 

concurrently, as the frame array and recursive pointer can leverage the inherent 

hardware capabilities of the processor to create different sets of page tables for 

each process to access memory. The processor cores support this through multiple 

CR3 targets. Recall the CR3 tells the memory manager where the start of the page 

tables exists. From there the MMU translates the virtual address to physical 

memory frames using the tables loaded into the CR3, hiding the implementation 

details from the user application developer. The micro-kernel maintains the 

pointer to this CR3 target for each process and simply updates the register inside 

the core upon process load. SMP is supported as each processor contains a unique 

CR3, but the only processer running on the system as of now is the BSP.  

3.4 Hypervisor 

The hypervisor itself is only run by the BSP after being loaded by the stage-two 

bootloader. The hypervisor will run the SMP micro-kernel as a virtual machine 

above it as presented in chapter one. Prior to this however, the hypervisor must 

configure its interrupt controller as well as find, boot, and configure the APs.  
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3.4.1 Utilizing the Application Processor Cores 

The main driver of an x86 processor and arguably the most important part, 

whether it is scheduling, handling unplanned events, or responding to user input, 

is the interrupt system [119]. The first of these interrupt controller chips, the Intel 

8259 Programmable Interrupt Controller (PIC) was introduced to be compatible 

with the Intel 8086 processors [111]. The PIC however was not designed to be 

used in a SMP architecture. This coupled with the fact that the PIC used Port-

Mapped Input/Output (PMIO), which is slower than the newer standard of MMIO 

meant a new hardware interrupt controller had to be implemented.  

 

The solution introduced by Intel came in the form of two chips. The Intel 

82489DX or better known as the Advanced Programmable Interrupt Controller 

(APIC) [120], replaced the software interrupt functionality provided by the PIC. 

The APIC uses MMIO [5] to provide timing, exception handling, and software 

interrupts to the processor. Additionally, the APIC also provides the brand new 

feature of Inter-Processor Interrupts (IPIs), where one processor core can send a 

software interrupt to another or all processor cores. These IPIs were made 

possible by providing each processor core with its own dedicated local APIC. 

Thus, enabling each core to handle interrupts independently of any other core. 

The other chip, the Intel 82093AA, better known as the Input/Output Advanced 

Interrupt Controller (I/O APIC), would become the new interface between 

hardware generated interrupts and the processor.  
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A whole new paradigm of programming the interrupt system was introduced, with 

the introduction of the split APIC and I/O APIC using MMIO. This can be seen as 

both chips are no longer at a constant location as was with the PMIO based PIC. 

However, the added benefits far outweigh this additional burden. The presence of 

multiple APICs allows a developer to enumerate the number of cores on the 

system while being able to perform SMP related tasks that were simply not 

possible with the PIC architecture. The process of finding and using the APIC and 

I/O APIC can be distilled into the five steps seen in Figure 18 below 

 

 

Figure 18 - Process for Booting Application Cores 

3.4.2 Finding the Application Processor Cores 

The first attempt to introduce APICs, I/O APICs, and multiple processor cores to 

the x86 world can be seen in the of how they are found in physical memory. The 

heavy lifting of identifying present APICs and I/OAPICs is done by the BIOS 

prior to turning the system over to the bootloader. The challenge here becomes 

digging through the information stored haphazardly by the BIOS in memory and 

the associated standards and documentation that describe how to read this data. 
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3.4.2.1 Advanced Configuration Power Interface Table 

Hewlett-Packard, Intel, Microsoft, Phoenix Technologies, and Toshiba developed 

ACPI in 1996 to provide an industry standard for an ever growing collection of 

BIOS code, power management, multiprocessor support, and many other system 

hardware interfaces [98]. Though the ACPI specification covers all manners of 

system hardware, the piece needed for SMP is known as the Multiple APIC 

Descriptor Table (MADT). The steps for finding the MADT are outlined in 

Figure 19.  

 

Figure 19 - Process for Finding and Parsing ACPI Tables 

The first step is to find a pointer stored in memory by the BIOS. As per the ACPI 

specification at one of the following two locations: 

• Physical memory 0x9FC00 to 0x13FC00 

• Physical memory 0xE0000 to 0x1E0000 

The search signature has is “RSD PTR ”, which it is important to note the trailing 

white space. The C code and the structure of the RSDT to accomplish this search 

are given in Figure 20 below. 
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Figure 20 - Remote System Descriptor Pointer (RSDP) and Search Code 

With the RDST found, it is now possible to parse the ACPI tables as a whole. The 

ACPI tables start at the RSDT, which is comprised of multiple entries known as 

ACPI headers, which itself contains a pointer to sub-tables. These sub-tables are 

expanded ACPI headers that may either consist of more tables or a variable 

number of data entries. For the case of MADT, it consists of just a variable 

number of entries that describe the number of APICs, I/O APICs, and Interrupt 

Overrides present on the system. The layout in memory if the ACPI tables looks 

as follows. 
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Figure 21 - ACPI Layout in Memory 

From this diagram two challenges of parsing the ACPI tables can be seen. First, 

and one reason why a memory manager was built, is that the ACPI tables fall 

outside of the initial 2MB of memory mapped by the identity tables created by the 

bootloader. Second, from the RSDP at least three pointers must be followed 

across memory to eventually find and parse the MADT, which is an ACPI sub 

table. 
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The processes of growing the initial page tables to map the ACPI tables as well as 

parsing them are inherently intertwined. The information contained in the RSDP 

allows the RSDT to be mapped and the information contained in the RSDT is 

used to map the rest of ACPI space. The code contained in Appendix E first maps 

the RSDT and then calculates the size of the entirety of the ACPI space. As the 

BIOS often will place ACPI tables across page boundaries, the end of the ACPI 

tables is calculated to be two 4KB pages past the point of the address calculated 

from the RSDT. Thus a while loop is used to identity map the start to end of the 

ACPI region.  

 

Once completed, a second while loop iterates over all of the ACPI header entries 

contained within the RSDT. For each entry it is determined what table that 

specific ACPI header is pointing to. In this case the signature “APIC” represents 

the MADT and when found must be parsed to obtain information regarding to the 

APICs and I/O APICs on the system. 

 

The MADT consists of an expanded ACPI header, which contains the MMIO 

address of the APIC. From there it consists of a variable number of APIC, I/O 

APIC, and Interrupt Override entries. Thus, one last while loop parses this data. 

The loop starts past the expanded header entry and searches for each sub-entry 

type based on the device ID type. When this loop finishes, the needed information 

pertaining to enabling SMP on the system has been obtained. 
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3.4.3 SMP configuration for the Bootstrap Processor 

With the BSP and hypervisor armed with the ability to manipulate paging and the 

knowledge of APICs and I/O APICs on the system, the hypervisor may now begin 

to take the steps to configure its own APIC and the system I/O APIC. The former 

is necessary to boot other cores and provide software interrupts while the latter is 

necessary to provide hardware interrupts. 

 

3.4.3.1 Enabling the APIC 

The APIC is enabled by reading/writing to the APIC MMIO register address that 

was found previously in the ACPI tables. Notable APIC register fields and values 

that can be written are provided in the Intel Software Developer’s Manual [5]. 

Notable APIC register fields and values that can be written are provided in 

Appendix F. The APIC read/write C functions and code to enable the APIC are as 

follows. 
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Figure 22 - Code to Enable Advanced Programmable Interrupt Controller 

The code above assumes the address of the APIC MMIO register address has 

been identity mapped by the memory manager. This address is represented by the 

value lapicaddr (Lines: 1 & 6), which typically defaults to 0xFEE00000, but 

should be compared to the address found either in the MP or ACPI tables. The 

lapic_init function enables the APIC to a known good state for handling 

interrupts.  

 

The base state is initialized by first writing the Destination Format Register (DFR) 

(Line: 12) and Logical Destination Register (LDR) (Line: 13) so that the APIC 

delivery mode is set to flat. This means that when sending IPIs between processor 

cores, the DFR is first read to see that a flat model is in use by ensuring bits 28 

through 21 are set to 1111. Then the local APIC ID programmed into bits 24 
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through 27 of the LDR is compared on each core to the APIC ID sent in the IPI 

via a bitwise AND. If true, that local APIC accepts the IPI. Bits 28 through 31 of 

the LDR are used for cluster IPIs where more than one core can be sent the same 

IPI. As the IPIs in this chapter are directed to a single core, these bits are set to 

zero to signify that cluster IPIs are not in use. 

 

The local interrupt vector registers are then addressed (Lines: 14-17). These 

vectors determine if an interrupt is generated by an APIC if certain conditions are 

met. As the APIC, which will be used later for scheduling, has not been 

calibrated, it is disabled temporarily. The Performance Counter interrupt is set to 

non-maskable, which means that if performance counters are in use, they will 

generate an interrupt upon overflow. Lastly, both the local Interrupt 0 & 1 pins are 

disabled. These pins are used to chain legacy devices to the APIC and are not 

needed. 

 

All that is left is to turn the APIC on, so that it starts receiving and generating 

software interrupts. This is done by setting the Task Priority Register to 0 (Line: 

20) and ensuring spurious interrupts generated by the APIC are routed to an 

unused interrupt line (Line: 21). 

 

3.4.3.2 Configuring the APIC Timer 

The calibration of the APIC timer is accomplished by counting the number of 

times it fires over a known time quantum. This is in done in conjunction with the 
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Time Stamp Counter (TSC) [121], which counts the number of cycles executed 

by a core since it was last reset. The time quantum is based on the frequency of 

the processor core. The frequency is determined by three MSRs, which are read to 

see if Dynamic Acceleration or Turbo Boost is enabled, and the ratio that the core 

is running at [5]. Ratio is referred to by the Intel clock speed definition 

“ratio*100MHz”, which means a ratio of 10 results in a processor core running at 

1GHz. To find what ratio is used, the platform_info MSR is first checked to see if 

bit 31 set to 1. If it is, Dynamic Acceleration is enabled, which means the ratio 

can be found in bits 40-44 of the performance_status MSR. If the bit was not set, 

then the maximum ratio is found in bits 8-15 of the platform_info MSR. Next, bit 

16 in the flex_ratio MSR is read to see if it is set. With a value of 1 indicating that 

Turbo Boost is active and the ratio reported by the flex_ratio MSR should be used 

to calculate core speed. If the flex_ratio MSR does not report a ratio, then the 

default maximum ratio reported by the platform_info MSR should be used to 

calculate core speed. If Turbo Boost is not active according to bit 16 in the 

flex_ratio MSR, then the maximum ratio reported by the platform_info MSR is 

used. The code for this process can be found in Appendix G. 

 

The value determined from the above ratios will be used to determine how fast 

process switching occurs and has to be handled delicately. For example, if the 

timer operates at the same frequency as the core (freq/Large_Divisor) the system 

will never execute user space code as a timer interrupt will occur almost the same 

time as the user process starts running. The opposite is also true, if this frequency 
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is too slow (freq/Small_Divisor), the system will fire timer interrupts at an 

extremely slow rate, which will result in one user process hogging all of the 

processor cycles. In testing, a divisor of 100 has proven optimal for calibrating the 

APIC Timer on a 3.4 GHz i7 Intel processor with Bear’s software load, which 

includes a hypervisor, micro-kernel, a number of user processes, and user space 

drivers. What this means is if the processor operates at 3.4 billion cycles per 

second (3.4 GHz), then a timer will fire roughly once every 34 million cycles.  

 

To perform this calibration, the APIC Time Current Register is set to a very large 

number that will be decremented as the timer fires at a periodic interval. Two 

initial values are then sampled from both the TSC and APIC Time Current 

Register prior to entering a do while loop, which then continues to sample both of 

these timers. The loop will run until the TSC reports a difference between the 

initial and current TSC value greater than the desired frequency of the APIC 

Timer (frequency/100). Once, the loop is exited the difference in count between 

initial APIC time value and the last APIC time value can be programmed into the 

APIC Timer. The APIC Timer will then generate an interrupt every time this 

count reaches zero and the count will begin again after the interrupt is handled by 

the either the hypervisor or micro-kernel. This APIC generated interrupt is the 

basis for time slice scheduling used by the micro-kernel. The code to perform this 

calibration can be seen below.  
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Figure 23 - C Code to Program APIC Timer 

3.4.3.3 Configuring the I/O APIC 

With the APIC and its timer calibrated, all that remains before booting the 

application processor cores is configuring the I/O APIC. That recall, replaced the 

PIC for handling interrupts generated by peripheral devices such as the keyboard 

and network card. To handle these interrupts it is an actual piece of hardware on 

the motherboard and configurable via MMIO, but has one unique feature. The 

MMIO region contains a redirection table for 24 external hardware interrupts. The 

entries are 64 bits in length and can be accessed between MMIO bits 0x10 to 
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0x3F, where the first entry’s low 32-bits are programmed through MMIO register 

0x10 and the high 32-bits through MMIO register 0x11 The second entry uses 

0x12 for the low and 0x13 for the high. This incremental process repeats for all of 

the interrupts supported, which can be found by reading the version register 

located at MMIO address 0x01. The layout of a single redirection table entry is 

seen below. 

 

 

Figure 24 - I/O APIC Registry Table Entry 

Hardware interrupts 0-23 are handled through this table, which necessitates the 

entries to be remapped past the exception interrupts 0-31. The remapping occurs 

by writing the new interrupt vector to the interrupt field described by bits 0-7. An 

additional benefit of this table can be seen in that the Destination Field described 

by bits 56-63, which allows for external interrupts to be routed to any processor 

core’s local APIC on the system. Thus, a system could be built that has a single 

processor core in charge of handling all of the interrupts generated by a network 

card. The general course of action however is to first configure the I/O APIC in a 

default state with all hardware interrupts disabled. 
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Just as with the APIC, Read and Write helper functions do the heavy lifting for 

configuring the I/O APIC. This address on most systems generally defaults to 

0xFEC00000, but should always be verified with the address reported by the 

ACPI tables. Also, as configuration is primarily done via the remapping tables, 

two 32-bit high and low registers; a structure of two uint32_t can be used by these 

helper functions.  

 

 

Figure 25 - C I/O APIC and I/O APIC Read Write Helper Functions 

Using these helper functions the initial configuration of the I/O APIC can be 

streamlined down to 10 lines of code or 12 counting #defines for readability. This 

is simplified further by Intel sharing the same default hex values for enable, 

disable, assert, etc. between the APIC and I/O APIC as documented in the Intel 

Software Developer’s Manual [5].  
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Figure 26 - C Code to Initialize the I/O APIC 

The only register that is read is the Index register, which contains the number of 

entries in the redirection table (line 7). This is used by the loop (Lines: 10-13) to 

iterate over all the entries, which disables them (Low 32-bit Register - Line: 11) 

and then routes them to local APIC zero (High 32-bit Register - Line: 12), which 

is the BSP. The I/O APIC is now in a known good state and leaves it to the 

hardware driver software to enable its own interrupt lines. The function that 

provides this service is below.  

 

 

Figure 27 - C Code to Enable an I/O APIC Entry 
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3.4.4 Booting the Application Cores  

All of the pieces that support starting and using SMP are now in place. This 

leaves the BSP in charge of putting a framework in place for these additional AP 

cores to boot and operate. This work is constrained by the fact that all of the AP 

cores are placed in a halted state in 16-bit real mode by the BIOS. The BSP 

rectifies this by placing a small piece of code in low memory that the application 

core will execute to trampoline itself quickly to 64-bit long mode. The trampoline 

code is essentially a stripped down version of the stage one bootloader code. As 

the AP core need only load the bare minimum registers to make it to 64-bit long 

mode. This pseudo code for this can be seen below and the two important lines to 

note are 1 and 7 as the bootstrap processor provides these. 

 

 

Figure 28 – Application Core Trampoline Pseudo Code 

The stack (Line: 1) is provided through strategically choosing a location to load 

trampoline code. Furthermore, this location can’t impact anything else that 

already exists in low memory and is in use. Recall, the initial identity mapped 
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page tables that address low memory that were created by the stage-one 

bootloader. These tables start at 0x1000 and go to 0x4FFF. Also remember, that 

the BIOS leaves the AP cores HALTED in 16-bit real mode, where they can only 

address physical memory. Thus, the trampoline code must not overwrite any part 

of the BSP’s page tables. As well as preventing the AP from performing any 

action that could corrupt those tables as it executes the trampoline code. Thus, to 

meet these requirements the trampoline code is loaded at 0x6000. 

 

The AP core also has the added benefit of being able to leverage the already 

created page tables, which it does by loading the PML4T base 0x1000 into its 

CR3 (Line: 7). The concern that jumps to mind with shared page tables is that the 

AP core can now modify the same memory addressed by the BSP core, which 

could cause the system to crash via non-deterministic behavior. This is addressed 

in the process used to start the application core via locking and is best seen by 

walking through the code used to start all the AP cores. 
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Figure 29 - Process to Start Application (AP) Cores 

First, note the variables marked volatile (Lines: 0 & 9), this is required due to the 

shared page tables between cores, caching, and the compiler. This marking 

ensures that there will be no optimization of these two variables that could result 

in non-deterministic behavior when the BSP and AP cores access them at the 

same time. The BSP then zeros the region of low memory used by the AP cores as 

well as loading the trampoline code (Lines: 12 & 14). The BSP then enters the 

loop that will boot all of the AP cores on the system (Lines: 18-28). For each AP 

core it also creates a new stack that will be used by the AP core once it enters 64-

bit long mode. This is necessary, as two AP cores cannot use the same low 

memory stack at the same time. The process of booting the AP cores is iterative as 
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only one AP core boots at a time. The BSP uses the Intel Universal Startup 

Algorithm [99] to start each AP core booting (Line: 24), followed by the BSP 

then waiting for the AP core to signal it has finished booting (Lines: 26-27).  The 

loop on lines 26 & 27 is exited once the AP core has made it to 64-bit long mode 

and called the function set_running(), which signals the BSP that is allowed to 

boot the next AP core.  

 

The signal to boot and tell the application core where to start executing is 

provided by the Intel Universal Startup Algorithm that is documented in the MP 

Specification [99]. The algorithm uses special IPIs through the APIC Interrupt 

Control Register High (ICRH) and Interrupt Control Register Low (ICRL). The 

ICRH and ICRL are both 32 bit registers, which the APIC converts into a 64-bit 

long IPI, with the ICRH holding the upper 32-bits and the ICRL holding the lower 

32-bits. Bits 56-63 in the ICRH contain the Destination Field that holds the APIC 

ID to message. ICRL bits 8-10 are the Delivery Mode type, which tells the 

sending APIC if the IPI is a special IPI (RESET, STARTUP, etc) or a software 

interrupt. If the IPI is special, the interrupt vector field can be ignored or used to 

provide additional information. In the case of the Universal Startup Algorithm, it 

is three serialized special IPIs in the format of: INIT, sleep(1000), STARTUP, 

sleep(200), STARTUP, sleep(100).  
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3.4.5 Hypervisor Modifications to Support APIC Access Virtualization 

To support the APIC in the virtual machine the hypervisor acts as an abstraction 

layer. Meaning the changes made in it are completely unknown to the virtual 

machine operating above. This abstraction is built by modifying the hypervisor’s 

VMExit handler and its transition and state storage code. These changes boil 

down to the five steps seen below. 

 

 

Figure 30 - Steps to Support SMP Guest Virtual Machines 

3.4.5.1 Hypervisor Locking and Processor State Storage 

 

To protect hypervisor-controlled resources, such as the EPT, which are only 

modifiable by a single core at a time, locking must be used during the transitions 

to the hypervisor from the virtual machine. The method of using a spin-lock to 

protect the hypervisor is also used by the micro-kernel for scheduling and is fully 

detailed in section 3.5.1. Each core transitioning to the hypervisor grabs the lock 

on entry and releases it upon exit. This prevents any core from modifying the 

hypervisor state at the same time as another.  Thankfully, the spin-lock 

performance impact on the hypervisor is minimal as transitions to and from the 
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hypervisor are minimized as much as possible by virtualization technologies like 

EPT and APIC Access Virtualization.   

 

The real difficulty lies in creating storage for each core. Previously, in a single 

core implementation, a block of the heap was used to store the guest virtual 

machine state for a transition into the hypervisor. This state is then reloaded prior 

the guest being resumed. In an SMP hypervisor using this method, every core 

would try to write to the same heap location. If this were not changed, then every 

core operating inside the virtual machine would have a corrupted state as they all 

modify the same block of memory. Thus, each core receives its own block for 

local state information. This data is also copied into a permanent virtual machine 

storage location, which provides the guest the ability to resume execution on a 

different core if need be.  

The storage is accessed through a specific core APIC ID (section 3.4.3.1), which 

is used to index into the storage array. The layout of the data structure that is 

stored locally for each core is seen below.  
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Figure 31 - C Structure of Hypervisor Core Specific Local Storage 

While the rsp and rip are saved on transition, it should be noted that Intel provides 

access to both of these values through MSRs, which can be accessed at any point 

a core is within the hypervisor. They are stored here as a matter of practice to 

ensure all registers are consistently stored at the same time. The initialization of 

this structure is accomplished by a “for” loop that runs for the number of cores 

present on the system and can be seen in the code below. 
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Figure 32 - VCPU Structure Initialization 

3.4.6 Enabling APIC Access Virtualization 

The next step requires the hypervisor to force exits when the virtual machine tries 

to boot the AP cores. This is done, by first setting the APIC Access Virtualization 

bit 0 to 1 in the Secondary Processor-Based VM-Execution Controls MSR. Next 

the hypervisor must allocate one single page of virtual memory for the APIC 

Access page to reside on. The physical frame corresponding to this virtual page is 

then mapped into the virtual machine’s EPT table at the physical address where 

the virtual machine’s APIC’s MMIO register would reside. Thus, when the guest 

virtual machine’s cores read or write to its local APIC MMIO space it generates a 

VMExit, which the hypervisor can handle. 
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3.4.6.1 APIC Access Virtualization Exit Handling 

When the micro-kernel inside the virtual machine accesses its APIC it now 

generates a VMExit that reports exit reason 44 for APIC Access when the VM 

Exit Reason MSR is read. The hypervisor now must handle any potential APIC 

read or write request generated by the guest virtual machine’s cores. The code that 

performs this is located in Appendix H and is explained by the flow chart below. 

 

Figure 33 - Hypervisor APIC VMExit Handling Flow Chart 

The first step in handling the exit is to determine if the access was a read or a 

write. Reading the VM Qualification MSR does this, where if bit 12 is 1 then the 

guest performed a write and if bit 12 is 0 then the guest performed a read. In the 

event of a read, the hypervisor determines the APIC field that is being read by 

reading bits 0-11 of the VM Qualification MSR. The hypervisor then performs the 
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read for the guest, placing the read value in a location the guest will use, and then 

resumes execution of the guest.  

 

If the guest tried to write to the APIC MMIO register, then it must determine if 

the write was a write to ICRL. The VM Qualification MSR bits 0-11 again contain 

the field that was being written to. If it wasn’t a write to ICRL, the hypervisor 

then performs the write to any other field for the guest and resumes guest 

execution. If instead it was a write to the ICRL, then the hypervisor must 

determine if the write was an IPI or not.  

 

The write can be determined to be an IPI using the 64-bit long mode function 

calling conventions. Recall the lapic_write function (section 3.4.3.1), where the 

second variable passed to it is a data variable. In 64-bit long mode, this value is 

passed in the rsi register. The hypervisor can then read the rsi register to see what 

data is being written to the APIC. If the data matches the INIT or SIPI signal, then 

the write is a special IPI. In the case that it doesn’t match, it is a regular IPI, 

which is handled by writing the guest requested ICRL data. It is important to note 

that the guest, prior to writing to the IRCL, has already written the ICRH, which 

was handled by the hypervisor as a normal write and contains the destination of 

the IPI.   

 

In the case of an INIT or SIPI signal the hypervisor begins to track the guest to 

see if it is using the Intel Universal Startup Algorithm. The first INIT starts a 
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count to look for the three startup IPIs. The INIT itself is ignored by the 

hypervisor and the guest then resumes execution. Next, the hypervisor will grab 

the next SIPI in the algorithm, which it will also ignore. Once the receipt of the 

second SIPI, the hypervisor will then take action to join another AP to a virtual 

machine. This is accomplished by sending an IPI to a waiting AP to inform it 

needs to join a guest. The process of joining to the guest is explained in further 

detail in the next section. The BSP sends the IPI and waits for the AP by reading 

the APIC Delivery bit 12 in its own local APIC ICRL. This bit will remain 1 until 

the AP writes zeros to its own local APIC End of Interrupt (EOI) register, which 

also zeros the delivery bit on the sending local APIC. The sending core can then 

resume guest execution.  

 

3.4.6.2 Joining Cores to a Running Guest 

With a system in place to catch and handle APIC accesses, all that is left to 

support SMP guests is to join another AP to the running system. As mentioned in 

the previous section, a waiting AP in the hypervisor is sent an IPI to start this 

process. As IPIs are limited to just the software interrupt vector in terms of data, a 

global variable is often used with them to pass data from one core to another. In 

this case the data is a pointer to the running virtual machines virtual process 

structure, which can be seen below. 

 



 

	
   101	
  

 

Figure 34 - C Structure for Guest Virtual Machine 

This structure having already been populated by the hypervisor to start the already 

running virtual machine makes joining another core to the same virtual machine a 

straightforward endeavor. The virtual machine control registers on the joining 

core are loaded with all the same data as the already running guest (VMX 

registers, APIC Access Page, EPT pointer, etc), which is performed by the 

join_to_vproc function on line 17 in the code below. This function takes the 

running guests vproc structure as an argument and mallocs a clone of it for the 

core joining the already running guest. Additionally, this core’s interrupts are 
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disabled and its APIC EOI register is cleared before joining the core to the 

running guest using the VMLAUNCH command. 

 

 

Figure 35 - Function to Join AP to Virtual Machine 

3.5 Micro-Kernel SMP Scheduling Considerations 

After all the AP cores have joined the micro-kernel virtual machine, scheduling of 

user processes can begin. The scheduling system must provide each core its own 

idle process, which is run when no other user process is ready to be scheduled. 
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This section assumes that a system is in place to create new page tables for each 

new process, which results in multiple CR3 targets. 

 

3.5.1 Locking and Transitions 

The micro-kernel is sacrosanct in its control over memory and must be protected. 

Where any processor core may make changes in a process’ user memory without 

worry of impact to another core, this is not true for the micro-kernel memory. 

Every process has the same micro-kernel mapped into its page tables and if two 

cores were to access protected features at the same time, the system could crash. 

For example if two cores accessed the micro-kernel heap at the same time, both 

cores could be assigned the same block of memory to use. The standard solution 

to this problem and the one used by this here is a single spin-lock for the micro-

kernel, which Linux had a form of with the Big Kernel Lock up until the 2.6.39 

Linux kernel was released [122].  
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Figure 36 - C Code to Implement Spin-Locking 

The heart of the spin-lock code is the x86 assembly instruction xchgq, which is an 

atomic instruction, meaning that it is guaranteed only one processor core will 

execute it at a time. In this case of the exchange function, the instruction swaps 

either a 1 or a 0 with the value stored in lock_address. If the operation succeeds a 

1 is returned and if it fails a 0 is returned. The exchange function is called by 

acquire_lock, which will continuously call exchange until a 1 is successfully 

swapped in. The exchange function is also called by release_lock, which will 

either swap in a 0 or have no effect if a 0 has already been swapped in. These 

three functions form the basis of the spin-lock, with acquire_lock called whenever 



 

	
   105	
  

a core transitions to the micro-kernel and release_lock called whenever a core 

exits. 

 

During this transition to the micro-kernel, the core saves the user space registers. 

Since this is process specific, these registers are stored inside the process structure 

of a user process. These registers are then restored prior to a process resuming 

user space execution. The more interesting transition occurs when the micro-

kernel registers are saved when a process transitions inside its kernel space to 

another process’ kernel space. In this case the registers are again saved in the 

process structure, but the current process’ CR3 target is also saved into the 

process structure. Subsequently, the CR3 target of the next process to run is then 

written into the core’s CR3. This results in the old processes page tables being 

flushed from the TLB and the new processes page tables becoming the MMU’s 

active set of tables for translation, which are stored in the TLB as the MMU 

traverses them. [30] Furthermore, the system does not crash, because each process 

has the same micro-kernel mapped into its page tables. So, while the new process 

remains in the same location in micro-kernel virtual memory, it has an entirely 

new user virtual memory space. 

 

3.5.2 User & Idle Process Scheduling 

The last issue to contend with is what to do when there are fewer user processes to 

run than there are cores on the system. In this case the cores not running a process 
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have to idle. This is achieved by creating a four line idle process with its own 

CR3 for each core to run in this scenario.  

 

 

Figure 37 - Assembly Code to Idle a Core 

In the well-known round robin scheduler algorithm [123] the next process in the 

scheduling queue is always the next to be run. In a single core system, the 

scheduling queue almost always remains full of user processes, but also has been 

loaded with a single idle process in case no user processes are available to run. In 

a SMP system, the multiple cores can quickly drain the scheduling queue of user 

processes and the single idle process to the point where one core may have no 

process to run next. For that exact case, the idle process is removed from the 

scheduling queue. Instead, each core has its own idle process assigned to it, which 

is run when the queue is empty.  

 

3.6 Benchmarks and Analysis 

The memory and AIM 9 benchmarks described in chapter 1 were used to measure 

performance. In addition to the Dell OptiPlex 9010, a MacBook Pro with 8GB 

RAM and a 4-core 3.2GHz Intel i7 processor was also used for benchmarking. 

The Dell system ran the Micro-Kernel, Micro-Kernel on Custom Hypervisor, 

Fedora with 3.17.4-301 Linux Kernel, and Fedora 3.17.4-301 Linux Kernel on the 
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Xen 4.4 Hypervisor. The MacBook Pro ran VMware Fusion, a type 2 hypervisor 

[124] with an Ubuntu with 2.6.32-38-generic Linux Kernel guest that has 4Gb of 

ram and 4 processor cores provided to it from the MacBook Pro. 

 

Table 3 below provides the average number of processor cycles and the time from 

twenty runs of the memory and AIM 9 tests described in Chapter 1. The Table 

itself is broken into the Cycles it took to complete the memory benchmark, AIM9 

benchmark, and total for both. The Table also provides the time in seconds it took 

to complete the respective benchmarks and total time for both. 

 

 
Memory 
Cycles 

AIM9 
Cycles 

Total 
Cycles 

Memory  
Time (s) 

AIM9  
Time 

(s) 

Total 
Test 

Time (s) 
Micro-Kernel  
 2.9574E+11 1.4455E+11 4.4029E+11 86.98 42.52 129.50 
Micro-Kernel - 
Custom 
Hypervisor  2.9956E+11 1.5442E+11 4.5398E+11 88.11 45.42 133.52 
Fedora Kernel  
 4.7962E+11 1.4368E+11 6.2330E+11 141.06 42.26 183.32 
Fedora Kernel - 
Xen Hypervisor  4.0746E+11 1.9247E+11 5.9994E+11 119.84 56.61 176.45 
Ubuntu Guest -
VMware Fusion  4.6057E+11 0.9390+E11 5.5447E+11 143.92 29.34 173.27 

Table 3 - Memory and Processor Benchmarks 

 

Notice that the memory and the recursive paging system described here, on both 

the micro-kernel and the micro-kernel executing on the custom hypervisor is 

faster than Fedora, Fedora on Xen, and Ubuntu on VMware. Some of this 

performance gain can be attributed to the fact that a micro-kernel is a much lighter 

weight operating system than a full Linux kernel and thus can create processes at 

a faster rate. However, the purpose of benchmark, the creation of 100 processes 
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with a large number of malloc() and realloc() iterations, is to focus the 

performance measurements on virtual memory for user space as a whole. This 

provides an additional level of confidence that the performance gains can be 

attributed to recursive paging.  

 

Processor performance based on the AIM9 benchmarks had three noteworthy 

points of comparison: Although it was expected that the Micro-Kernel would 

outperform the larger Fedora Kernel, this is not the case. In fact, both systems 

scored roughly the same in terms of the number of cycles and time, with the 

Fedora kernel edging out the micro-kernel by ~.251 of a second to complete the 

AIM9 benchmark. This can be attributed to the superior scheduling offered by 

Fedora, while the micro-kernel performs well due to it simplicity: Both 

approaches result in the AIM9 tests running at all times directly on a core.  

 

It is important to notice the impact of a newer processor on the AIM9 benchmark. 

The type 2 VMware hypervisor running Ubuntu is running on a slower processor 

and with 4 less cores, but that processor was released ~15 months after the 

processor shipped with the Dell. The difference a year can make is staggering: the 

Ubuntu guest finishes the AIM9 benchmarks almost a full 13 seconds faster than 

any configurations running on the Dell. 

 

Finally, the presence of a hypervisor slows performance of the AIM9 benchmark 

on all of the systems. The micro-kernel has the smallest impact, which is due to 
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configuring the hypervisor to operate the guest as close to real time as possible. 

Larger hypervisors such as Xen and VMware are designed to manage multiple 

guests, which implies some configurations, which are suitable for a micro-kernel 

is not suitable for them. This can be seen in the larger performance impact when 

comparing Fedora to Fedora on Xen. 

 

3.7 Summary 

The	
  implementation	
  of	
  a	
  full	
  SMP	
  system,	
  let	
  alone	
  one	
  that	
  also	
  supports	
  an	
  

SMP	
   hypervisor	
   requires,	
   a	
   great	
   deal	
   of	
   research	
   into	
   both	
   hardware	
   and	
  

software	
   architectures.	
   Once	
   implemented	
   though,	
   it	
   provides	
   fine	
   grain	
  

control	
   of	
   the	
   system	
   through	
   ACPI,	
   the	
   APIC,	
   I/O	
   APIC,	
   Paging,	
  

Virtualization,	
   and	
   so	
   on.	
   	
   It	
   provides	
   an	
   unparalleled	
   ability	
   to	
   quickly	
  

redefine	
  the	
  system	
  to	
  any	
  new	
  specification,	
  which	
  for	
  this	
  work	
  is	
  the	
  break	
  

up	
  and	
  reduction	
  of	
  the	
  micro-­‐kernel	
  into	
  the	
  UVM	
  architecture.	
  	
  

  



 

	
   110	
  

Chapter 4 – Utility Virtual Machines 

To reduce the attack surface of the micro-kernel and replace it with a collection of 

UVMs, three key challenges were resolved: isolation of specific functionality 

within separate UVMs, communication and synchronization between virtual 

machines, and the allocation of virtual machines to processing cores to balance 

load across the cores.  Isolating functionality is a solved problem, as any unique 

UVM service exists in the micro-kernel. Furthermore, being a micro-kernel the 

driver components of the system are heavily modularized and have little kernel 

specific code other than messaging interfaces. This allows any driver to be 

removed from the system without major modification to the micro-kernel itself. In 

fact, multiple different testing configurations of the drivers existed prior to 

UVMs, to include: networking with NFS, no networking, keyboard only, and so 

on. This makes the creation of UVMs a process of choosing one of these 

configurations and then compiling out any unneeded functionality. 

 

The task of communication and synchronization between virtual machines 

required some outside the box innovation. As the message passing system, which 

uses an asynchronous model [33] to implement system calls and inter-process 

communication, was initially kernel only.  Furthermore, the semantic gap [18] 

that protects the hypervisor from virtual machines and virtual machines from each 

other is now a factor. As inter-process communication is central to UVMs, 

message passing was extended to the hypervisor and new facilities were be built 

to cross the gap.   
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The problem of assigning cores to specific UVMs required a complete redesign of 

the original Bear concept of a lightweight hypervisor [25]. The version one 

hypervisor was designed to support the operation of a single running guest micro-

kernel. With UVMs the hypervisor had to adapt to support the simultaneous 

operation of multiple lightweight task specific guests. Because the concurrent 

operation of VM, as well as the use of shared functionality guests, had never been 

previously executed, this represented an immense technical leap.  

 

4.1 Building the first UVM 

The first task was to build and run a solitary instance of the keyboard/VGA UVM 

on bare-metal without the hypervisor. The reasoning being that the keyboard and 

VGA drivers in order to run relied on the following assumed small subset of 

facilities: 

• System Calls – Fork, Exec, Get Process Identifier, User Malloc, Map 

Video Ram 

• The hardware Interrupt for the Keyboard – 0x21 

• User Space Drivers – VGA and Keyboard 

 

To reach this reduced working set, the procedure was largely manual, as build 

scripts had to be modified to remove the compilation of unnecessary pieces into 

the micro-kernel. Additionally, the micro-kernel itself was modified to remove 

obsolete system calls. This leaves the remaining services: fork and exec two 
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driver processes, the drivers to map their process identifier and Video RAM, and 

user space malloc for the standard I/O message passing. Combining these 

minimalistic configurations results in the creation of the architecture seen in 

Figure 38. 

 

 

 

Figure	
  38	
  -­‐	
  Keyboard/VGA	
  UVM	
  Kernel	
  Operation	
  

This setup only handles keyboard input and then prints it to screen, which all 

starts with a key press in (1). This key press triggers the I/O APIC to send the 

hardware interrupt 0x21 signal to the micro-kernel. The micro-kernel (2) contains 

the code to handle this interrupt and acknowledge that it was received. The 

messaging system then sends a generic keyboard interrupt message to the 
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keyboard driver in (3). The keyboard driver upon receipt interprets what key was 

actually pressed and then sends a message to the VGA driver containing the 

ASCII [125] character. The VGA driver (4) upon receipt of the message prints the 

character to screen.  

 

However, there was one impediment with the messaging system in this 

architecture that was not immediately realized until testing. As the asynchronous 

model for messaging is in use, both the drivers start up and issue a message 

receive, which is a blocking call, meaning both processes are halted until the 

messaging system unblocks their execution when they have a message ready for 

them. Until they can run, the idle process is executed, which recall just waits for 

an interrupt to be triggered. So, upon key press the keyboard and VGA drivers are 

unblocked and scheduled due to the hardware interrupt triggering the scheduling 

routines of the micro-kernel. After the letter is printed to screen the system hangs 

due to a cascading set of circumstances related to scheduling and interrupts, 

which is best illustrated in Figure 39. 

 



 

	
   114	
  

 

Figure	
  39	
  -­‐	
  Interrupt	
  Timing	
  in	
  Prototype	
  UVM	
  

The process of communication between cores works as expected in steps 1 

through 7. Messaging and IPIs only break down in steps 8 and 9 when the VGA 

driver responds to the now halted keyboard driver. The keyboard driver fails to 

reschedule after receipt of the IPI, because IPIs are software interrupts, which will 

not be received if the hardware interrupt flag is set. The hardware interrupt flag is 

still set on core 0, because it can only be cleared after the acknowledgement 

receipt, which tells the keyboard it can now receive subsequent key presses. This 

prevents out of order receipt or loss of key press by the keyboard driver. Thus, 

with the response IPI never being received, the scheduler is never run and both 

cores are stuck idling. 

 

Thankfully, the solution lay in the adjustment of the initial assumptions to include 

the timer interrupt, which itself is a hardware interrupt and cannot be overridden 

like a software interrupt. Initially, it was absent, as the goal was to reduce the 
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overhead of unneeded interrupt context switches when neither the VGA or 

keyboard drivers were in use. Unfortunately, the need to break out of the idle 

process persists, which requires it to remain. Upon reintroduction of the timer 

interrupt, the system performs as expected and multiple key presses can be 

handled with no hangs. 

 

4.2 Extending Message Passing to the Hypervisor 

Next	
  the	
  UVM	
  for	
  Keyboard	
  and	
  VGA	
  had	
  to	
  be	
  run	
  on	
  top	
  of	
  the	
  hypervisor	
  

and	
  pass	
  messages	
  between	
  drivers	
  through	
  the	
  hypervisor.	
  Running	
  a	
  single	
  

UVM	
   on	
   the	
   hypervisor	
   is	
   no	
   different	
   than	
   running	
   a	
   single	
   micro-­‐kernel	
  

guest	
  on	
  the	
  hypervisor.	
  As	
  such,	
  discussion	
  of	
  this	
  is	
  omitted	
  in	
  this	
  thesis,	
  

but	
   a	
   detailed	
   description	
   is	
   available	
   by	
   Kanter	
   [126].	
   The	
  main	
   technical	
  

tasks	
  covered	
  here	
  are	
   the	
  extension	
  of	
   the	
  messaging	
  system	
  and	
  crossing	
  

the	
   semantic	
   gap	
   to	
   interpret	
   the	
   messages.	
   This	
   can	
   be	
   visualized	
   by	
  

thinking	
   of	
   Figure	
   38	
   above	
   as	
   the	
   top	
   orange	
   component	
   of	
   the	
   larger	
  

system	
  in	
  Figure	
  40	
  below.	
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Figure	
  40	
  -­‐	
  Keyboard/VGA	
  UVM	
  Running	
  on	
  the	
  Hypervisor	
  

In	
  this	
  new	
  architecture	
  the	
  I/O	
  APIC	
  (1)	
  uses	
  interrupt	
  passthrough	
  (2)	
  [5]	
  

to	
   deliver	
   the	
   hardware	
   interrupt	
   directly	
   to	
   the	
   running	
   keyboard/VGA	
  

UVM.	
  Consequently,	
  no	
  additional	
  handling	
  overhead	
  has	
  to	
  be	
  added	
  to	
  the	
  

hypervisor	
   for	
   interrupts.	
   The	
   extensive	
   changes	
   come	
   from	
   coupling	
   the	
  

micro-kernel	
  messaging	
  system	
  to	
  the	
  hypervisor	
  messaging	
  system	
  through	
  

VMCALLs	
   (3)	
   and	
   the	
   passing	
   of	
   messages	
   between	
   cores	
   (4)	
   via	
   IPIs.	
  

Development	
  of	
  this	
  initial	
  prototype	
  pegged	
  the	
  keyboard	
  process	
  to	
  core	
  0	
  

and	
   the	
   VGA	
   process	
   to	
   core	
   1	
   with	
   all	
   messages	
   between	
   them	
   routed	
  

through	
  the	
  hypervisor.	
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Step	
   (3)	
   has	
   two	
   components,	
   which	
   are	
   the	
   new	
   hypervisor	
   messaging	
  

queue	
   and	
   the	
   vmexit	
   handler	
   that	
   is	
   used	
   to	
   cross	
   the	
   semantic	
   gap	
   to	
  

interpret	
   messages.	
   The	
   queue	
   code	
   can	
   be	
   seen	
   in	
   Appendix	
   I	
   and	
   is	
  

comprised	
  of	
  four	
  functions:	
  	
  

• init_util_msg_queue(void)	
   opens	
   the	
   queue	
   and	
   is	
   called	
   during	
   the	
  

startup	
  of	
  the	
  hypervisor.	
  	
  

• add_util_msg(Util_msg_t*	
  msg)	
  adds	
  messages	
  to	
  the	
  queue.	
  

• remove_util_msg(void)	
   removes	
   messages	
   from	
   the	
   queue	
   that	
   are	
  

meant	
  for	
  the	
  core	
  it	
  is	
  called	
  on.	
  

• static	
   int	
   core_msg_cmp(void*	
   msg,	
   const	
   void*	
   core_number)	
   is	
   the	
  

helper	
   function	
   called	
   by	
   remove_util_msg(void)	
   to	
   find	
   messages	
  

assigned	
  to	
  a	
  specific	
  core.	
  

	
  

The	
   hook	
   into	
   the	
   hypervisor	
   for	
   inter-­‐VM	
  message	
   sends	
   and	
   receives	
   is	
  

provided	
   by	
   a	
   VMCALL,	
   which	
   is	
   a	
   special	
   virtualization	
   instruction	
   that	
  

forces	
   a	
   guest	
   to	
   exit	
   to	
   the	
   hypervisor	
   [5].	
   To	
   fully	
   understand	
   what	
   is	
  

happening	
  in	
  step	
  (3)	
  and	
  how	
  it	
  relates	
  to	
  IPIs	
  in	
  (4),	
  it	
  is	
  best	
  to	
  go	
  through	
  

the	
  process	
  of	
  the	
  keyboard	
  driver	
  sending	
  a	
  message	
  to	
  the	
  VGA	
  driver.	
  	
  

	
  

The	
  message	
  send	
  with	
   the	
  ASCII	
  character	
   to	
  be	
  printed	
  still	
  goes	
   into	
   the	
  

standard	
  micro-kernel	
  messaging	
   system.	
  However,	
   before	
   calling	
   a	
  normal	
  

message	
  send	
  it	
   instead	
  calls	
   the	
  hypv_msg_send	
   function	
  seen	
  in	
  the	
  Figure	
  

41.	
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Figure	
  41	
  -­‐	
  kmsg_hypv_send	
  code	
  

This	
  function	
  is	
  a	
  wrapper	
  for	
  kmsg_vcall	
  on	
  line	
  9,	
  which	
  takes	
  the	
  following	
  

arguments:	
  

• 45	
  –	
  Specifies	
  this	
  is	
  a	
  message	
  send	
  for	
  the	
  VMCALL	
  vmexit	
  handler.	
  

• virt2phys(mp-­‐>buf)	
   –	
   The	
   guest	
   physical	
   address	
   of	
   the	
   message	
  

buffer.	
  

• (void*)virt2phys((void*)(mp))	
   –	
   The	
   guest	
   physical	
   address	
   of	
   the	
  

message	
  header.	
  

• (void*)mp	
  –	
  The	
  guest	
  virtual	
  address	
  of	
  the	
  message.	
  

	
  

After	
  the	
  vmcall	
   instruction	
  on	
  line	
  3	
  is	
   issued,	
  core	
  0,	
  which	
  is	
  running	
  the	
  

keyboard	
   driver	
   is	
   dropped	
   into	
   the	
   hypervisor.	
   The	
   arguments	
   passed	
   to	
  

kmsg_vmcall	
  are	
  accessed	
  by	
  the	
  hypervisor	
  through	
  the	
  guest	
  state	
  variables	
  

according	
  to	
  x86-­‐64	
  calling	
  conventions:	
  45	
  in	
  rdi,	
  virt2phys(mp-­‐>buf)	
  in	
  rsi,	
  

(void*)virt2phys((void*)(mp))	
   	
   in	
  rdx,	
  and	
  (void*)mp	
  in	
  rcx.	
  The	
  hypervisor	
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then	
  uses	
  these	
  variables	
  to	
  cross	
  the	
  semantic	
  gap	
  and	
  decipher	
  the	
  message	
  

that	
  is	
  being	
  sent.	
  	
  

	
  

Those	
   four	
   variables	
   are	
   enough	
   to	
   cross	
   the	
   gap,	
   because	
   they	
  provide	
   all	
  

the	
  information	
  as	
  to	
  where	
  the	
  message	
  is	
  located	
  in	
  host	
  physical	
  memory.	
  

Thus,	
  the	
  hypervisor	
  need	
  only	
  to	
  map	
  the	
  host	
  physical	
  address	
  relating	
  to	
  

the	
   guest	
   physical	
   address	
   into	
   its	
   virtual	
   memory	
   to	
   obtain	
   the	
   message,	
  

which	
  is	
  accomplished	
  by	
  the	
  code	
  in	
  Figure	
  42.	
  

	
  

	
  

Figure	
  42	
  -­‐	
  Crossing	
  the	
  Semantic	
  Gap	
  

Any	
   unassigned	
   virtual	
   address	
   has	
   the	
   offset	
   of	
   the	
   guest	
   virtual	
   address	
  

added	
  to	
   it	
   (line	
  0).	
  This	
   is	
  because	
  messages	
  are	
  stored	
   in	
   the	
  kernel	
  heap	
  

and	
  are	
  not	
  paged	
  aligned.	
  Then	
  the	
  EPT	
  is	
  traversed	
  to	
  find	
  the	
  host	
  physical	
  

address	
  (line	
  2)	
  that	
  relates	
  to	
  the	
  guest	
  physical	
  address.	
  This	
  host	
  physical	
  

address	
  is	
  then	
  attached	
  to	
  the	
  unassigned	
  virtual	
  address	
  (lines	
  4	
  &	
  5).	
  Then	
  

and	
   only	
   then	
   can	
   the	
   hypervisor	
   access	
   the	
   guest’s	
   message	
   (line	
   7).	
  

However,	
   This	
   process	
  has	
   to	
   be	
   repeated	
   for	
   every	
  pointer	
   contained	
   in	
   a	
  

message,	
  which	
   is	
   the	
   reason	
   the	
  message	
   buffer	
   guest	
   physical	
   address	
   is	
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also	
   passed	
   to	
   the	
   hypv_msg_send.	
   Note	
   the	
   virtual	
   address	
   of	
   the	
   guest	
  

message	
  buffer	
  is	
  not	
  needed	
  as	
  that	
  is	
  contained	
  in	
  the	
  message	
  header.	
  

	
  

Once,	
  the	
  message	
  is	
  fully	
  deciphered	
  it	
  is	
  stored	
  in	
  the	
  hypervisor	
  messaging	
  

queue	
  and	
  tagged	
  with	
  the	
  core	
  it	
  is	
  destined	
  for,	
  which	
  in	
  this	
  case	
  is	
  core	
  2.	
  

Core	
  2	
   is	
  notified	
  by	
   core	
  0	
   that	
   it	
   has	
   a	
  message	
   through	
   the	
   software	
   IPI	
  

0x8F.	
  The	
  IPI	
  forces	
  Core	
  2	
  to	
  execute	
  the	
  interrupt	
  handler	
  code	
  in	
  Figure	
  43	
  

for	
  a	
  hypervisor	
  message	
  receive	
  inside	
  the	
  micro-­‐kernel	
  of	
  the	
  UVM.	
  	
  

	
  

Figure	
  43	
  -­‐	
  UVM	
  Message	
  Receive	
  Interrupt	
  Handler	
  

The	
  handler	
  sets	
  up	
  an	
  empty	
  message	
  that	
  will	
  be	
  filled	
  in	
  by	
  the	
  hypervisor	
  

(lines	
   1,	
   3,	
   &	
   4).	
   The	
  uvm_msg_loc	
   variable	
   is	
   a	
   block	
   of	
  memory	
   allocated	
  

inside	
  of	
  a	
  UVM	
  for	
  message	
  transfers.	
  As	
  it	
  is	
  impossible	
  to	
  know	
  how	
  large	
  

the	
  message	
   buffer	
   will	
   be,	
   two	
   contiguous	
   4KB	
   pages	
   are	
   used.	
   Then	
   the	
  

handler	
   issues	
   a	
   VMCALL	
   (line	
   6	
   &	
   7),	
   which	
   is	
   almost	
   identical	
   to	
   the	
  

VMCALL	
   in	
   Figure	
   43,	
   except	
   it	
   passes	
   46	
   instead	
   of	
   45.	
   This	
   tells	
   the	
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hypervisor	
  to	
  treat	
  it	
  as	
  a	
  message	
  receive	
  in	
  the	
  vmexit	
  handler.	
  Core	
  2	
  now	
  

in	
   the	
  exit	
  handler	
  again	
  performs	
  all	
   the	
   same	
  steps	
   to	
   cross	
   the	
  semantic	
  

gap	
  as	
  were	
  done	
  in	
  Figure	
  42,	
  but	
  with	
  the	
  addition	
  of	
  copying	
  the	
  previous	
  

message	
   send	
   into	
   the	
   empty	
   translated	
  message	
   variable.	
   The	
   hypervisor	
  

returns	
  core	
  2	
  to	
  normal	
  execution	
   in	
  the	
  UVM	
  it	
  will	
   issue	
  a	
   local	
  message	
  

send	
   (line	
   9).	
   The	
   VGA	
   driver	
   will	
   then	
   receive	
   the	
   message	
   to	
   print	
   a	
  

character	
  from	
  the	
  keyboard	
  driver.	
  This	
  whole	
  process	
  then	
  repeats	
  again	
  in	
  

reverse	
  when	
  the	
  VGA	
  driver	
  sends	
  the	
  acknowledgement	
  receipt	
  back	
  to	
  the	
  

keyboard	
  driver.	
  

	
  

4.3 Pairing Two UVMs Together 

With	
   the	
   keyboard/VGA	
  UVM	
   in	
  place,	
   it	
  was	
   time	
   to	
  pair	
   it	
  with	
   the	
   Shell	
  

UVM,	
  which	
  contains	
  all	
  user	
  space	
  processes.	
  However,	
   to	
  do	
  this,	
  support	
  

for	
  concurrent	
  operations	
  of	
  two	
  virtual	
  machines	
  was	
  needed.	
  To	
  speed	
  this	
  

work,	
   the	
  decision	
  was	
  made	
   to	
   statically	
   assign	
   cores	
   to	
   specific	
  UVMs.	
   In	
  

this	
  way	
  the	
  keyboard/VGA	
  UVM	
  could	
  be	
  assigned	
  core	
  0	
  and	
  the	
  Shell	
  UVM	
  

could	
  be	
  assigned	
  the	
  remaining	
  cores	
  1-­‐7.	
  This	
  also	
  allows	
  for	
  the	
  UVMs	
  to	
  

chain	
   load	
   with	
   the	
   next	
   loading	
   after	
   the	
   preceding	
   one	
   has	
   finished	
   its	
  

micro-­‐kernel	
  initialization.	
  

	
  

Prior	
  to	
  either	
  UVM	
  starting,	
  two	
  vprocs	
  are	
  created	
  that	
  each	
  has	
  their	
  own	
  

independent	
   virtualization	
   control	
   structures.	
   The	
   only	
   actual	
   difference	
   is	
  

the	
  tailored	
  code	
  for	
  the	
  jobs	
  they	
  support.	
  The	
  keyboard/VGA	
  UVM	
  starts	
  on	
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core	
   0	
   first	
   and	
   has	
   one	
   additional	
   line	
   added	
   to	
   the	
   end	
   of	
   its	
   kernel	
  

initialization,	
   “kvmcall(0xA,2,0);”,	
  which	
   is	
  used	
   to	
  chain	
   load	
   the	
  next	
  UVM.	
  

This	
  VMCALL	
  has	
  core	
  0	
  execute	
  the	
  hypervisor	
  code	
  in	
  Figure	
  44.	
  

	
  

	
  

Figure	
  44	
  -­‐	
  Launch	
  Second	
  UVM	
  Code	
  

The	
  majority	
  of	
  the	
  code	
  is	
  error	
  handling	
  (lines	
  3-­‐9	
  &	
  17-­‐20),	
  as	
  there	
  are	
  a	
  

few	
  cases	
  that	
  must	
  be	
  accounted	
  for.	
  First,	
  no	
  UVM	
  can	
  be	
  assigned	
  virtual	
  

process	
   ID	
   0	
   as	
   that	
   is	
   reserved	
   per	
   Intel	
   instruction	
   [5].	
   Also,	
   the	
   virtual	
  

process	
  ID	
  given	
  from	
  the	
  VMCALL	
  cannot	
  be	
  higher	
  than	
  the	
  actual	
  number	
  

of	
  UVMs	
  present.	
  Avoiding	
  this,	
  the	
  number	
  two	
  is	
  passed,	
  which	
  represents	
  

the	
  virtual	
  process	
  ID	
  for	
  the	
  shell	
  UVM.	
  From	
  there	
  the	
  vproc	
  is	
  found	
  (line	
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11)	
  and	
  then	
  an	
  IPI	
  is	
  sent	
  to	
  the	
  core	
  2	
  (line	
  13),	
  which	
  starts	
  the	
  Shell	
  UVM.	
  

Note	
  core	
  2	
  and	
  not	
  core	
  1	
  is	
  started	
  first	
  as	
  this	
  conforms	
  to	
  the	
  start	
  order	
  

provided	
  by	
  ACPI	
  [98].	
  

	
  

Once	
  both	
  UVMs	
  are	
  up	
  and	
  running	
  they	
  immediately	
  start	
  communicating	
  

with	
  each	
  other.	
  The	
  keyboard	
  driver	
  sends	
  messages	
  to	
  the	
  Shell	
  when	
  the	
  

enter	
   key	
   is	
   pressed.	
   The	
   VGA	
   driver	
   receives	
   messages	
   locally	
   from	
   the	
  

keyboard	
   and	
   between	
   VMs	
   from	
   standard	
   output	
   such	
   as	
   printf().	
   The	
  

complete	
  UVM	
  architecture	
  can	
  be	
  seen	
  in	
  the	
  Figure	
  45.	
  

	
  

	
  

Figure	
  45	
  -­‐	
  Complete	
  UVM	
  Architecture	
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Now	
  the	
  true	
  security	
  benefits	
  can	
  be	
  clearly	
  seen	
  through	
  the	
  dividing	
  lines	
  

in	
   this	
   diagram.	
  The	
  hardware	
  boundary	
   (1)	
   results	
   in	
   only	
   the	
  hypervisor	
  

having	
   access	
   to	
   the	
   hardware.	
   The	
   semantic	
   gap	
   (2)	
   enforced	
   by	
   the	
   EPT	
  

further	
   abstracts	
   the	
   hardware	
   from	
   the	
   UVMs,	
   but	
   also	
   protects	
   the	
  

hypervisor	
  from	
  malicious	
  guests.	
  The	
  last	
  abstraction	
  is	
  the	
  kernel	
  and	
  user	
  

boundary	
   (3),	
   which	
   isolates	
   the	
   UVM	
   micro-­‐kernels	
   from	
   their	
   user	
  

processes	
  or	
  device	
  drivers.	
  The	
  UVMs	
  themselves	
  are	
  protected	
   from	
  each	
  

other	
   through	
   virtualization	
   (4)	
   and	
   all	
   communications	
   between	
   them	
   is	
  

protected	
   through	
   first	
   their	
   messaging	
   system	
   and	
   then	
   the	
   hypervisor	
  

messaging	
   system.	
   Furthermore,	
   these	
   inter-­‐UVM	
   communication	
   channels	
  

are	
   strictly	
   enforced	
   by	
   the	
   hypervisor	
   where	
   anomalous	
   sends	
   between	
  

UVMs	
   are	
   disallowed.	
   For	
   example,	
   if	
   the	
   keyboard	
   driver	
   attempted	
   to	
  

communicate	
   with	
   any	
   other	
   process	
   than	
   the	
   shell	
   the	
   hypervisor	
   would	
  

halt	
  the	
  execution	
  of	
  the	
  Keyboard/VGA	
  UVM.	
  

 

4.4 Benchmarking and Analysis 

Again the memory and Aim 9 benchmarks were used and the results can be seen 

in Table 4.  
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Memory	
  
Cycles	
   AIM9	
  Cycles	
   Total	
  Cycles	
  

Memory	
  
Time	
  (s)	
  

AIM9	
  
Time	
  
(s)	
  

Total	
  
Time	
  
(s)	
  

Bear	
  Micro-­‐
Kernel	
  	
   2.9574E+11	
   1.4455E+11	
   4.4029E+11	
   86.98	
   42.52	
   129.45	
  
Bear	
  Micro-­‐
Kernel	
  &	
  
Hypervisor	
  	
  	
   2.9956E+11	
   1.5442E+11	
   4.5398E+11	
   88.11	
   45.42	
   133.52	
  
Keyboard/	
  
VGA	
  UVM	
  
(no	
  network)	
  

3.0288E+11	
  
	
  

1.4533E+11	
  
	
  

4.4821E+11	
  
	
  

89.08	
  
	
  

42.74	
  
	
  

131.83	
  
	
  

   Table 4 - Keyboard/VGA UVM Benchmarks 

The performance of the hypervisor messaging system and the UVMs was better 

than expected. As each inter-UVM message adds two VMCALLs (send & receive) 

it was predicted that the system would slow a significant amount, because more 

time would be spent in the hypervisor and crossing the semantic gap can be 

expensive [87].  However, the UVMs performed about equal to the micro-kernel 

with hypervisor. Being about ~1 second slower in memory and ~3 seconds faster 

in AIM9, which results in ~2 second decrease in total test time.  

 

The memory performance was within margin of 1.1% and cannot definitively be 

attributed to UVM messaging, less cores for the multiple process test, or just 

margin of error. However, the AIM9 performance was 6.1% greater and can be 

attributed to the UVM architecture, which completely offloads printing to a 

separate VM. This free the Shell UVM to capitalize those few extra cycles to 

finish the AIM9 test faster. 

 

As for attack surface and the mitigation of zero-day threats it is important to note 

all the differing attack surfaces in the UVM architecture. First, the keyboard/VGA 
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UVM micro-kernel has shrunk from 2,904 lines of code to 2,072, which is a 

decrease of 33.4%. Furthermore, the lines of code contained in user space are 

1,210 lines versus the full micro-kernels user space of 50,592, which is a 

difference of 190.7%. The beauty of the UVM architecture is that much of the 

missing user components are provided in a separate Shell UVM. The Shell UVM 

saw its micro-kernel decrease to 2,311 lines, which is a reduction of 7.1%. The 

Shell UVM’s user space shrank to a size of 2,600 lines for a difference of 180.4%. 

However, these large user space reductions primarily come from eliminating the 

network functionality from these UVMs, as it comprises 46,612 lines of user 

space code. The next chapter deals with returning this network functionality to the 

architecture through an additional network UVM. Lastly, the hypervisor saw an 

increase from 2,489 lines to 2,654 to support the UVM messaging system and 

simultaneous UVM operation. This was an increase of 6.4%, but these are also the 

hardest to reach for an attacker as they are protected by the semantic gap.   

 

4.5 Summary 

Besides	
   some	
   initial	
   difficulty,	
   the	
   hypervisor	
  messaging	
   system	
   and	
   inter-­‐

UVM	
   communication	
   component	
   were	
   completed	
   to	
   form	
   the	
   basis	
   of	
   the	
  

UVM	
  architecture.	
  The	
  hypervisor	
  now	
  contains	
  much	
  of	
  the	
  same	
  MPI	
  based	
  

messaging	
   system	
   that	
   was	
   originally	
   built	
   for	
   the	
   micro-­‐kernel.	
   The	
  

exceptions	
   being	
   that	
   messages	
   are	
   routed	
   based	
   on	
   core	
   ID	
   instead	
   of	
  

process	
   ID,	
   and	
   that	
   only	
   designated	
   processes	
   can	
   initiate	
   messages	
  

between	
   UVMs.	
   This	
   provides	
   an	
   added	
   layer	
   of	
   security	
   by	
   enforcing	
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communication	
   as	
   one-­‐way	
   channels.	
  More	
   importantly,	
   it	
   also	
   proves	
   that	
  

hypervisor	
  messaging	
  is	
  possible	
  with	
  current	
  hardware,	
  which	
  was	
  an	
  early-­‐

identified	
  challenge.	
  

	
  

The	
  inter-­‐UVM	
  communication	
  was	
  effectively	
  built	
   through	
  the	
  coupling	
  of	
  

IPIs	
   with	
   VMCALLs,	
   thus,	
   providing	
   an	
   effective	
   means	
   for	
   one	
   VM	
   to	
  

interrupt	
  another	
  when	
  it	
  is	
  ready	
  to	
  receive	
  a	
  message	
  that	
  it	
  is	
  being	
  sent.	
  

Notably,	
  this	
  method,	
  while	
  increasing	
  time	
  spent	
  in	
  the	
  hypervisor,	
  actually	
  

increased	
   performance	
   of	
   the	
   overall	
   system.	
   Allowing	
   for	
   more	
   tasks	
   to	
  

execute	
   simultaneously	
   through	
   the	
   introduction	
   of	
   multiple	
   lightweight	
  

UVMs.	
  This	
  current	
  architecture	
  precludes	
  the	
  largest	
  portion	
  of	
  the	
  system,	
  

which	
   is	
   the	
  networking	
   component.	
   The	
   lack	
   of	
   a	
   complete	
   system	
  means	
  

the	
   question	
   of	
   it	
   being	
   possibly	
   to	
   fully	
   fragment	
   a	
   kernel	
   has	
   not	
   been	
  

completely	
  answered.	
  

	
  

In	
  terms	
  of	
  security	
  advancements,	
  the	
  initial	
  architecture	
  is	
  very	
  promising.	
  

The	
   kernel	
   and	
   user	
   code	
   bases	
   have	
   been	
   significantly	
   shrunk,	
   which	
  

minimizes	
   the	
   attack	
   surface	
   and	
   increases	
   attacker	
  workload	
   by	
   reducing	
  

the	
   number	
   of	
   gadgets	
   available	
   for	
   ROP	
   attacks.	
   	
   Attackers	
   are	
   further	
  

hindered	
   through	
   sandboxing	
   provided	
   by	
   the	
   semantic	
   gap	
   through	
   EPT,	
  

which	
  is	
  harder	
  to	
  cross	
  as	
  the	
  code	
  base	
  shrinks.	
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Chapter 5 – A Further Abstraction: The Network UVM 

As mentioned earlier the networking subsystem, which consists of the e1000 

driver and Network File Sharing Daemon (NFSD) has not been added. These are 

the largest and most complex pieces of the operating system as they interface with 

everything from hardware to user space libraries. Separating them from the 

system as a whole required more architectural engineering and introspection than 

that of the previously implemented keyboard/VGA UVM. 

 

The primary service provided by the networking component is to load binaries 

from a trusted store that resides within the cloud [28]. The transfer occurs in a 

newly forked process’ user space execve system call prior to a program running. 

The code that performs this uses four message types to interface with the NFSD: 

Stat – checks if the file is there; Open – creates a network path to the file; Seek – 

moves the file system pointer to the start of the file; and Read – copies the file to a 

local object. Once the binary is transferred, the execve code sends a message to 

the micro-kernel to copy the user space binary and then load it into memory for it 

to be executed. Therefore, the hypervisor must pass these same NFSD messages 

back and forth between any network UVM and the already existing shell UVM. 

 

This is complicated in by the Read interface, which is actually an Application 

Programming Interface (API) [127] wrapper that hides multiple low level data 

read messages. While the e1000 card supports data transfers of 2KB or 2048 

bytes, the NFSD only allows for a max read per request of 1KB or 1024 bytes. To 
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ensure a file is read fully, multiple read messages are sent in a do while loop that 

continues until the entire file has been copied locally. 

 

Under these constraints, 210 read messages would be needed to load a file like the 

shell, which is 213,895 bytes in size. According to the UVM architecture 

presented in chapter 4 this would entail 418 VMCALLs for the read operation and 

this excludes any additional messages needed for Stat, Open, and Seek. Thus, a 

different approach was chosen as the overhead for the inter-VM messages and 

multiple memory copies throughout the hypervisor would be immense. 

 

5.1 Network Utility Virtual Machine Helper Daemon (NUVMHD) 

One option would have been to rewrite the NFSD and its interfaces to implement 

the network UVM. However, potentially breaking an interface to implement the 

UVM architecture goes against the adopted principle of modularity [25] and 

hinders future portability. Instead, the solution chosen entails the encapsulation of 

the API into the NUVMHD process seen in Figure 46, which was first 

implemented on top of the micro-kernel without the hypervisor.  
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Figure 46 Encapsulation of NFSD into NUVMHD 

The significance of this is to picture these processes themselves contained within 

the network UVM and the black box being the message interface into the UVM. 

Where by going from (1) to (2) the interface complexity is reduced by a factor of 

four and Stat, Open, Seek, and Read messages are all bottled into two messages. 

The send and reply code itself is 8 lines, which can be seen in Figure 47. 

 

 

Figure 47 - NUVMHD Send and Reply Structure 

To obtain a binary from the NUVMHD another process sends the string (line 2) of 

the binary it is trying to download. Once received, all of the same steps that were 
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taken in the user portion of execve are followed, which ends in the binary being 

loaded into the NUVMHD user virtual memory. The catch here is the process that 

requested the binary does not have access to the loaded binary, because every user 

process has its own unique virtual address space due to multiple CR3 targets. This 

is alleviated by the NUVMHD transferring the binary to the shared micro-kernel 

through a system call. This transfer was originally performed by execve so the elf 

loader could load the process, which means no new work is done as it has been 

relocated from execve to the NUVMHD. Upon completion, the reply message that 

is sent back to the requesting process contains the address (line 8) of the now 

loaded binary.  

 

5.2 Implementing the Network UVM 

The creation of the Network UVM followed the same manual process that was 

involved in building the keyboard/VGA and shell UVMs. The newly created VM 

was tailored to include the e1000 driver, the NFSD, and the NUVMHD. It was 

also modified to chain load the next UVM after it had been initialized.  

 

There still remained one impediment to it being fully functional though, which 

again related to the binary. The NUVMHD interface between VMs worked as 

intended in that the shell UVM would request a binary, the network UVM would 

load the binary in its own context, and then it would reply with the address the 

binary had been loaded at. The shell UVM, if it attempts to access this address 

would crash, because the binary is still stuck within the network UVM. The 
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reason for this is the hypervisor only transfers the message header and the 

message buffer, which between the two contains only a pointer to the binary 

(figure 2, line 8).  

 

To resolve this issue further introspection is needed to transfer the binary between 

the VMs. This introspection is enabled by adding the guest physical address of the 

binary to the fields of the kvmcall function, which allows the host physical 

address of the binary to be found in the EPT. Recall, the virtual address for 

alignment and size of the binary are already provided in the reply buffer. All of 

this information is then used to copy the binary from the guest into a malloced 

space inside the hypervisor. The pointer to the binary is then stored in the 

message it loads in its messaging queue in place of the address that was provided 

from the network UVM. The hypervisor then notifies the shell UVM through IPI 

that the reply message is ready for it.  

 

The shell UVM of course knows nothing about the binary and the hypervisor has 

no way of knowing where to copy the binary into the shell UVM. To work around 

this, the shell UVM has a block of blank memory that it zeros and passes as the 

address in the reply message that the hypervisor will use. Again, this address must 

have its guest physical address passed in the kvmcall function in order for the 

hypervisor to use it. To ensure there is enough space for the binary, a block that is 

larger than known binary sizes is used.  
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Once the shell UVM core is inside the hypervisor it then pulls the message from 

the queue. It introspects the address provided by the shell UVM so as to map and 

then copy the binary to that memory. The shell UVM then resumes function with 

the same virtual address, but with the actual binary located behind it. More 

importantly this eliminates the need for the system call in the shell UVM, as the 

hypervisor copies the binary directly into the micro-kernel. The system call must 

remain in the network UVM as VMCALLs can only be executed from the micro-

kernel and the binary is initially loaded in user space.  

 

5.3 Benchmarking and Analysis 

Prior to testing, it was believed that the presence of the Network coupled with the 

network UVM would cause a slow down, because of it size and scope. However, 

this was not the case as seen in the test results of the memory and AIM9 tests in 

Table 5: 

 

 

Memory 
Cycles 

AIM9 
Cycles Total Cycles 

Memory 
Time (s) 

AIM9 
Time (s) 

Total 
Time (s) 

Bear Micro-
Kernel  2.9574E+11 1.4455E+11 4.4029E+11 86.98 42.52 129.45 
Bear Micro-
Kernel & 
Hypervisor   2.9956E+11 1.5442E+11 4.5398E+11 88.11 45.42 133.52 
Keyboard 
/VGA UVM 
(no network) 

3.0288E+11 
 

1.4533E+11 
 

4.4821E+11 
 

89.08 
 

42.74 
 

131.83 
 

Network 
UVM 3.0362E+11 1.4682E+11 4.5043E+11 89.30 43.18 132.48 

Table 5 - Network UVM Benchmarks 

	
  
Instead,	
   the	
   network	
  UVM	
  performed	
   on	
   par	
  with	
   the	
   keyboard/VGA	
  UVM	
  

configuration.	
  The	
  only	
  noticeable	
  effect	
  was	
  a	
  slight	
  slow	
  down	
  of	
  the	
  AIM9	
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tests,	
  which	
  is	
  most	
  likely	
  attributed	
  to	
  a	
  hypervisor	
  bottleneck.	
  As	
  the	
  core	
  

i7	
  processer	
   that	
   is	
   in	
  use	
  does	
  not	
   support	
   end	
  of	
   interrupt	
  virtualization,	
  

which	
  requires	
  every	
  core	
  to	
  drop	
  into	
  the	
  hypervisor	
  to	
  clear	
  the	
  APIC	
  flag	
  

that	
  corresponds	
  to	
  it	
  on	
  the	
  issuance	
  of	
  every	
  interrupt.	
  The	
  network	
  card,	
  

which	
   generates	
   a	
   large	
   amount	
  of	
   interrupts	
  needs	
   this	
   flag	
   cleared	
  often,	
  

which	
   means	
   the	
   core	
   handling	
   the	
   network	
   UVM	
   may	
   be	
   holding	
   the	
  

hypervisor	
  lock	
  when	
  a	
  shell	
  UVM	
  core	
  also	
  needs	
  to	
  clear	
  the	
  flag.	
  

	
  

Furthermore,	
   the	
   network	
   UVM	
   still	
   performed	
   ~1	
   second	
   faster	
   than	
   the	
  

hypervisor	
   and	
  micro-­‐kernel	
   only	
   configuration.	
  While	
   this	
   is	
   only	
   a	
   .78%	
  

difference	
  and	
  cannot	
  be	
  fully	
  claimed	
  as	
  a	
  performance	
  improvement,	
  it	
  can	
  

nonetheless	
  be	
  claimed	
  that	
  performance	
  wasn’t	
  decreased	
  due	
  to	
  UVMs.	
  The	
  

equality	
   of	
   performance	
   can	
   be	
   surmised	
   to	
   be	
   from	
   the	
   separation	
   of	
   the	
  

interrupt	
   heavy	
   network	
   card	
   from	
   the	
  main	
   user	
   component.	
   In	
   this	
   way	
  

while	
   less	
   cores	
   are	
   present	
   in	
   the	
   shell	
   UVM,	
   the	
   user	
   processes	
   are	
  

interrupted	
   less	
   due	
   to	
   the	
   absence	
   of	
   the	
   network	
   card,	
   which	
   is	
   most	
  

noticeable	
  in	
  AIM9	
  testing.	
  

	
  

In	
  regards	
  to	
  attack	
  surface	
  the	
  network	
  UVM	
  micro-­‐kernel	
  had	
  a	
  reduction	
  

from	
  2,904	
   lines	
   of	
   code	
   to	
  2,492	
   resulting	
   in	
   a	
   15.3%	
   reduction.	
  The	
  user	
  

space	
  code	
  decreased	
  by	
  7.97%	
  from	
  50,592 to 46,715 lines, 103 of which are 

the NUVMHD. The hypervisor saw an increase of 52 to support the additional 

introspection and copies. The Shell UVM micro-kernel saw a small increase by 4 
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to allocate the block of memory needed for binary transfers. The user space 

portion needed 20 lines to manage messaging between it and the network UVM. 

	
  

5.4 Summary 

	
  
Networking, the final component of a complete operating system, has been 

successfully added to the UVM architecture. Any user now has access to the same 

services that a monolithic kernel would provide, but with the added benefit of 

enhanced hardware protections and split UVM architecture, proving that it is 

possible to securely fragment a kernel and still maintain normal operation. 

 

Additionally, buggy device drivers used as a springboard for a ROP attack may 

still be able to infect their UVM, but they have lost their ability to extend that 

compromise to other parts of the system. In a similar vein, malicious users have 

lost the ability to access and break trusted device drivers. This is all provided on 

top of the fact that each individual component, user or driver has a significantly 

reduced micro-kernel and user space attack surface, which increases attacker 

workload through the restriction of available gadgets. Also, in contrast to most 

security techniques, performance of UVMs was either on par or better than a 

standard hypervisor, which proves that security can be added to the system that 

has little or no performance overhead. 
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Chapter 6 – Heat Diffusion Scheduling 

With the advent of the UVM architecture there is an every increasing number of 

independent tasks and processes being executed. While initial UVM performance 

with static core assignment is on par or better than a standard hypervisor. This 

will not always be the case, as UVM technology transitions deeper into the cloud 

and UVMs begin floating between cores. This presents a challenge of identifying 

a new scheduling technique for the execution of a multiplicity of tasks across 

cores. 

 

What to choose is a complex task, as a wide selection of scheduling algorithms 

can be utilized in operating system design and no one size fits all.  For example, 

real time computing systems [128] must respond to high priority jobs as soon as 

they occur, because not doing so could result in system failure. For these types of 

environments, preemptive schedulers [129] are used to give preference to highest 

priority jobs first and the lowest priority jobs last.  In contrast, larger operating 

systems often use multilevel feedback queues, which partition the ready queue 

into two or more queues [130]. For each new process that is scheduled the system 

determines which queue to place the process in. Each queue may have its own 

unique scheduling algorithm based on the processes it serves. Additionally, this 

allows an under served process to be rescheduled in a higher priority queue and 

likewise an over served process to a lower priority queue. However, The main 

goal of all of these algorithms is to minimize resource starvation [93], which is 

when a process is denied access to a resource it needs to finish execution. 
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In the context of most operating systems, the critical resource is CPU cycles 

needed to execute user, kernel, or hypervisor code.  The first version of Bear was 

a uniprocessor system that ran a handful of user process drivers and user 

programs. Thus, fairness of scheduling was provided to each through the round-

robin algorithm [123]. As it provides a starvation free solution by offering every 

processes the same length time slice to run on the processor core before the next 

process is scheduled. The enforcement of time slices was provided through the 

Programmable Interrupt Timer (PIT), which fired at a constant time interval. 

 

As Bear matured however, new hardware architectures documented in chapter 3 

were added to replace legacy systems. The most impactful changes to scheduling 

were the replacement of the PIT with the higher resolution APIC timer and the 

transition to SMP. The APIC Timer allows scheduling of processes to occur at a 

faster rate than allowable with the PIT. Additionally, the APIC architecture allows 

for the scheduling of processes across all of the cores available. This was not 

possible in the early versions of Bear that utilized the PIT. Nonetheless the round-

robin scheme can still be used with SMP and a discussion of its software 

components follows below. 
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Figure 48 - Scheduling Software Components 

First, all processes that are able to run are stored in ready to run queue (1). When 

any of the cores (2) generate a timer interrupt they grab a kernel lock (3) and pull 

a process from the ready queue (1) in first-in first-out fashion. The process that 

was previously running on that core is stored in the process pointer array (4), 

which each core has its own entry in the array based on core number.  The 

previously running process is then put into the end of the ready queue (1). The 

next process to run is then stored in that core’s process pointer array (4) entry. 

Lastly, the kernel lock (3) is released and the new process executes. This method 

of scheduling is repeated for every core each time they receive a timer interrupt. 

 

In addition to architectural changes, the user land component also received several 

new complex drivers such as: Network File Sharing Daemon (12,850 lines of 

code), the e1000 network card driver (939 lines of code), and the associated LWIP 
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network stack [131] (33,762 lines of code). From the size of these three 

components alone it can be seen that they require additional computing resources 

as they form the backbone for network connectivity. 

 

Finally, ever more challenging operating system concepts in diversity [31], 

memory security [30], and utility virtual machines have been explored. Through 

all of this change, the round-robin scheduler remained in place.  Thus, all 

performance improvements over this time came from architectural changes that 

resided below the round-robin code. 

 

Therefore, a new scheduler was sought to better make use of these new realities 

and improve scheduling performance. This would not be without its own set of 

challenges, specifically, process affinity [132]. This is a uniquely multiprocessor 

problem based on the principle of cache coherency [112]. As in the Intel i7 

architecture [133] used in this thesis, the cache is laid out so that each core has its 

own L1 and L2 cache and all cores share an L3 cache. When a process moves 

from one core to another, information about it is often shared through the L3 

cache. This is a process known as snooping [133] by the other core through the L3 

cache prior to any transfer. However, when the data is not propagated fast enough 

between cores, a cache miss can occur, which introduces a significant time 

penalty on execution. The processor often has to go out to main memory to find 

the needed data, which is a slower process than when it is available in the cache. 

Another issue was the introduction of the e1000 network card and its driver to the 
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system, as the card itself by default will generate a hardware interrupt once every 

256 nanoseconds or every 3.9 million cycles of core execution. Recall, from 

chapter 3 that the APIC timer is set to fire once every 34 million cycles. This 

means that the core that receives the network interrupts will have each of its time 

slices interrupted on average ~8.2 times. Resulting in any process running on that 

core receiving less execution time than had it been on another. Thus, breaking the 

principle of equal time slice fairness in round-robin scheduling. 

 

To address the above issues and improve overall system performance a method of 

scheduling based on heat diffusion [34,134] was implemented. Several beneficial 

criteria exist for its selection: it uses a simple, fast, scalable algorithm involving 

only nearest neighbor communication [135], and global progress and convergence 

are guaranteed through well-established mathematical analysis. The algorithm has 

been shown, through simulation [136], to balance multiple independent load 

distributions over large-scale architectures [137], even with huge random load 

injections. Vector based extensions to the algorithm allow multiple resources 

(including process priority, interrupt routing, and CPU load) to be balanced 

concurrently [138]. 

 

6.1 Implementing diffusion 

Previously, much of the supporting research in heat diffusion scheduling had been 

done on large interconnected computing systems [34,138]. In these studies, one or 

more nodes would quickly become burdened with very large workloads, which 
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then diffused to other nodes via nearest neighbor communication. The same 

principles largely hold true for an individual SMP system, because a single 

compute node can now be considered a single processor core. 

 

However, some adjustments are made to the load calculation to account for some 

traditional measures that cannot be used to determine heat in a localized system. 

Bandwidth can be eliminated as the cores have near instantaneous communication 

between each other via a crossbar [133]. All cores share the main memory of the 

system, which removes the need to account for memory usage, because no 

additional memory is available. Fortunately, new measures for load can be 

attributed to process priority, interrupt routing, and individual core load. Driver 

processes can be given priority by weighting them at different heat levels than 

those of a standard user process as they often times perform more complex tasks. 

In terms of routing interrupts, the core receiving them will by default run hotter 

than one that is not. Lastly, each process itself carries its own heat that adds load 

to a core. These three variables can be stored and summed to calculate the heat of 

any core running at any given time.  A core can use this heat value to dynamically 

offload a process to another core with a lower workload. 

 

Two components exist for mapping heat to a core and then diffusing work 

between them. The first is the static component, which is the initialization and 

assumptions made for interrupts, process priority, and individual process heat. 

The second component is the dynamic load-balancing component that moves 
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processes between cores. These two pieces were built on top of the round-robin 

scheduler to provide the diffusion scheduler. The ready queue can continue to 

store all of the runnable processes that are present on the system by making two 

minor changes. The first is the addition an identifier in the process structure for 

each process that maps it to the core it is bound to. This allows for individual 

processes to be tracked across cores for heat calculations and scheduled by their 

assigned core. The second modification is the replacement of the qget() function 

with the qremove() function for scheduling the next process. Where qget() returns 

values from the queue in first-in first-out fashion, the qremove() function allows 

the ready queue to be searched by each core via their core ID, which maps to the 

new identifier in the process structure. The code for this process can be seen 

below. 
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Figure 49 - Code to Schedule Next Process 

ksched_schedule() is called for every timer interrupt to retrieve the next process to 

run for a specific core. It relies on reading the core’s local APIC ID (line 9) to 

pass to qremove() (line 11) along with the global pointer to the ready queue, and 

the helper function assigned_core(). The sole purpose of the helper function is to 

return the pointer to the first found process in the ready queue that has been 

mapped to that core. The process is then removed from the ready queue by the 

qremove()  function. Lastly, not seen here is the previously running process is 

added back to the end of the ready queue. 

 

To initialize the heat map an array of integers that is of length corresponding to 

the number of cores present is created (8 cores on Dell 9010). All of the cores 

start with an initial heat value of zero.  Cores that handle hardware interrupts can 

then be assigned heat values of 0, 10, 100, or 1000. These heat values move with 

the interrupt they are assigned to. Driver processes, like the e1000 driver are 

assigned heat values of 1 or 10 and move with them as well. All other user space 

processes are assigned a heat value of 1. Lastly, when a new process is created it 

is always assigned to the core that created it through the fork system call.  

 

The movement of processes to a new core occurs through the dynamic load 

balancing code, which is called during a timer interrupt, but before the next 

process is retrieved through ksched_schedule(). To ease explanation of how this 
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code works, the base case of all processes having a heat of 1 and no interrupt heat 

assignment is given below.  

 

 

Figure 50 - Dynamic Load-Balancing Code 

The balance() function returns the ID of the core the process will run on the next 

time it is scheduled. The ID returned by it is stored in the process identifier that 

was added to the process structure. This is accomplished by assigning the heat 

value of core zero to a comparator (line 3). Next, the for loop (line 5) iterates over 

the remaining values stored in the heat map. Along the way, if the current 

comparator’s heat is greater than another core’s heat, it will then swap the lower 

heat into the comparator (lines 7-8). Furthermore, the ID of the core with the 

lower heat is then stored in the variable ret (line 9). Upon completion of the loop 

the core with the least heat is increased by 1 (line 13). The core the process just 

ran on has its heat decreased by 1 (line 14).  
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There are a number of unique ways that the base case can be expanded upon. For 

one, the process structure can also be passed into the balance() function. This 

allows the routine to check an individual processes heat for comparison and 

swapping. So if a driver process with a heat of 10 was being considered for 

movement, the left half of the if statement (line 7) is modified to subtract that 

processes heat from the comparator (cmp – DELTA – process_assigned_heat). 

This also means that a similar change is made to the final addition and 

subtractions (lines 13 – 14) such that the process heat is accounted for correctly 

(heat_map[ret] += process_assigned_heat, etc). This is just one type of 

modification that can be made, but other possibilities exist to find the optimal 

load-balancing solution. 

 

Now one facet that has not been discussed is the DELTA (line 7) value used in the 

comparator portion of the balancing routine. This value exists due to the process 

affinity problem and only was discovered through testing. The primary purpose is 

to eliminate cache thrashing across cores in situations when low loads exist. A 

good explanation of what happens without a delta variable is when there are 10 

processes and 8 cores. In this situation the first 8 processes will be scheduled on 

one of the 8 cores. The last two processes after each scheduling round will be 

swapped dynamically to one of the other six. Every time one of these swaps 

occurs, the next run of that process will result in cache misses and large 
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performance penalties. Testing with low values for delta was performed to find 

the optimal number, which is 2. 

 

6.2 Benchmarks and Analysis 

To eliminate as many external factors that could impact performance, 

experimentation was completed on the kernel only version of the system. This 

removes the slow-down generated by the presence of the hypervisor and the 

virtual APIC settings. The memory benchmark is well suited for the evaluation of 

the diffusion scheduler as a single process spawns 100 additional processes. This 

results in one core having a high initial load that it then transfers to the other 

cores.  

 

The initial run of the diffusion scheduler used the code seen in Figure 50 minus 

the DELTA variable. The AIM9 test suite, which runs as a single process, 

illustrates the problem of process affinity as cache thrashing occurs and results in 

high overheads. Once, the issue was noticed, a DELTA of one and two are used in 

all further testing. Additional configurations of the scheduler include drivers with 

heat values of 10, all drivers pegged to a core, and hardware interrupts of heat 10, 

100, or 1000. The results of the varying methods and the round-robin scheduler 

performance are seen in Table 6.  

  



 

	
   147	
  

 

Scheduler 
Configurations 

Cycles 
Memory 

Cycles 
AIM9  Cycles Total 

Memory 
Time (s) 

AIM9 
Time 

(s) 

Total 
Time 

(s) 
Round-Robin 
Scheduler 
 

 
2.9574E+11 
 

 
1.4455E+11 

 
4.4029E+11 

 
86.98 

 
42.54 

 
129.50 

 
Diffusion –  
All Processes 1 
 

2.9185E+11 
 

2.2333E+11 
 

5.1519E+11 
 

85.84 
 

65.69 
 

151.53 
 

Diffusion –  
All Processes 1, 
Delta 1 

2.8910E+11 
 

1.7981E+11 
 

4.6891E+11 
 

85.03 
 

52.88 
 

137.91 
 

Diffusion –  
All Processes 1, 
Delta 2 

2.9378E+11 
 

1.4500E+11 
 

4.3878E+11 
 

86.41 
 

42.65 
 

129.05 
 

Diffusion –  
All Processes 1, 
Delta 1,  
Peg Drivers 

2.9111E+11 
 

1.7725E+11 
 

4.6836E+11 
 

85.62 
 

52.13 
 

137.75 
 

Diffusion –  
All Processes 1, 
Delta 2,  
Peg Drivers 

2.9316E+11 
 

1.4593E+11 
 

4.3909E+11 
 

86.22 
 

42.92 
 

129.14 
 

Diffusion –  
User Processes 1, 
Delta 1, 
Peg Drivers 10 

2.9391E+11 
 

2.0721E+11 
 

5.0112E+11 
 

86.44 
 

60.94 
 

147.39 
 

Diffusion –  
User Processes 1,  
Delta 2,  
Peg Drivers 10 

2.9420E+11 
 

1.4323E+11 
 

4.3743E+11 
 

86.53 
 

42.13 
 

128.66 
 

Diffusion - User 
Processes 1,  
Delta 2, 
Interrupts 10,  
Peg Drivers 1 

2.8634E+11 
 
 

1.4769E+11 
 
 

4.3402E+11 
 
 

84.22 
 
 

43.44 
 
 

127.65 
 
 

Diffusion –  
User Processes 1,  
Delta 2,  
Interrupts 100,  
Peg Drivers 1 

2.7283E+11 
 
 

1.5956E+11 
 
 

4.3239E+11 
 
 

80.24 
 
 

46.93 
 
 

127.17 
 
 

Diffusion –  
User Processes 1,  
Delta 2,  
Interrupts 1000,  
Peg Drivers 1 

2.8835E+11 
 
 

1.6225E+11 
 
 

4.5060E+11 
 
 

84.81 
 
 

47.72 
 
 

132.53 
 
 

Table 6 - Scheduler Performance Characterization 
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When reviewing Table 6, it is important to examine the individual tests first when 

evaluating the new scheduler, as the memory test benefits from improvements to 

multi-process execution. Whereas the AIM9 test suite sees performance gains 

when single process execution is sped up through an enhancement. Adding the 

times it takes to complete both tests together provides an overall measure of 

performance, but may miss potential impacts to either form of execution.  

 

For example, on the surface the diffusive scheduler without the DELTA variable 

overall performs 15.68% worse than the round-robin scheduler. This is solely 

because of a 42.78% performance penalty taken during single process execution 

of the AIM9 suite due to cache thrashing. In fact, multi-process execution during 

memory testing is improved by 1.32%, which almost certainly is impacted by 

cache thrashing to some degree. Thus, all testing is performed with a DELTA 

present. As noticeable performances gains were only shown using a DELTA of 

two, the following discussions will only be in regards to that setting. 

 

The diffusive scheduler performs equivalently to the round-robin scheduler once 

process affinity has been accounted for. Further exploration of increasing process 

affinity was explored by pegging drivers to a single core. This alone did not result 

in any performance gains.  In attempt to isolate drivers further from user tasks, 

their heat value was increased from 1 to 10. As this resulted in a .52% speedup for 

memory, a .97% speedup for AIM9, and an overall speedup of .70%. 
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Unfortunately, these results provide less than a 1% margin for scheduling 

improvement. 

 

The last variable that impacts normal core execution is hardware interrupts. In this 

approach the core receiving hardware interrupts from the I/O APIC will be 

assigned a heat of 10, 100, or 1,000. Drivers will continued to be pegged to cores 

to improve their individual process affinity as testing showed a marginal benefit 

in doing so. The graphed results of increasing heat can be seen in Figure 51 

below. 

 

Figure 51 - Diffusion Performance as Interrupt Heat Rises 

Looking at the graph it can be seen that from 0 to 100, memory and overall 

performance improve, while AIM9 performance decreases as interrupt heat rises. 
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Going from 100 to 1000 heat causes a decrease in all three categories. However, 

the setting of this variable at 100 has an effect of improving multi-process 

performance by 8.06%, but decreasing single process performance by 9.81%, 

which amounts to an overall performance increase of 1.82%. These results are 

noteworthy as they clearly demonstrate that the heat diffusion algorithm has a 

marked scheduling improvement in environments with heavy workloads. 

 

With all of the changes to the scheduler, it could be expected that there was a 

large addition of lines of code, which would increase the attack surface. However, 

this was not the case, as repurposing pieces of the round-robin scheduler kept the 

need for additional lines of code low. To add the minimal amount of support for 

diffusion, 29 lines of code were needed for the configuration presented in Figure 

50. To go to the full interrupt and driver pegging setup requires only an additional 

23 lines of code, which brings the total to 52 lines.  

 

6.3 Summary 

This chapter has shown that methods like heat diffusion can provide performance 

improvements for multi-process environments, which will be critical for the 

expansion of the UVM work to the cloud. As year after year has shown that cloud 

services continue to expand and core count on processors continue to rise. 

However, deployment of diffusive schedulers should initially be limited to multi-

process environments, because initial testing has shown a decrease in 

performance for single process tasks. 



 

	
   151	
  

  



 

	
   152	
  

Chapter 7 – Conclusions and Future Work 

This	
   thesis	
   examined	
   the	
   possibility	
   of	
   increasing	
   attacker	
   workload	
   and	
  

mitigating	
   zero-­‐day	
   threats	
   through	
   the	
   redesign	
   of	
   the	
   standard	
  

virtualization	
   architecture.	
  An	
   approach	
  based	
  on	
   shrinking	
   the	
   kernel	
   and	
  

user	
  components	
  to	
  be	
  encapsulated	
  into	
  lightweight	
  Utility	
  Virtual	
  Machines	
  

was	
   implemented	
   in	
   conjunction	
   with	
   scheduling	
   technologies	
   to	
   balance	
  

load.	
   Exceeding	
   the	
   expectations	
   of	
   its	
   original	
   design	
   goals,	
   the	
   UVM	
  

technology	
  provides	
  the	
  desired	
  virtualization	
  sandboxing	
  and	
  performed	
  on	
  

par	
  or	
  better	
  than	
  monolithic	
  virtualization	
  performance,	
  all	
  while	
  achieving	
  

its	
  goal	
  of	
  reducing	
  the	
  overarching	
  attack	
  surface.	
  

	
  

7.1 Conclusions 

Observations	
   about	
   attack	
   surface	
   for	
   the	
   various	
   UVMs	
   were	
   made	
   in	
  

chapters	
  4	
  and	
  5.	
  They	
  have	
  been	
  summarized	
  here	
  in	
  Table	
  7	
  for	
  discussion	
  

purposes,	
  with	
  reductions	
  marked	
  with	
  ↓	
  and	
  gains	
  marked	
  with	
  ↑.	
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Lines 
of 

Code 

Net Line 
Addition/
Reduction 

Percent 
Addition/ 
Reduction 

Estimated Number 
of Potential 

Vulnerabilities [27] 

Net Potential 
Vulnerability 

Increase/ 
Decrease 

Hypervisor 2,489 X 0.0% 0.2240 X 
Micro-Kernel 2,904 X 0.0% 0.2614 X 
Micro-Kernel 
user space 50,592 X 0.0% 4.5533 X 
UVM 
Hypervisor 2,706 217 ↑ 8.4% ↑ 0.2435 0.0195 ↑ 
Keyboard/VGA 
UVM Micro-
Kernel 2,072 832 ↓ 33.4% ↓ 0.1865 0.0749↓ 
Keyboard/VGA 
UVM User 
Space 1,210 49382 ↓ 190.7% ↓ 0.1089 4.4444↓ 
Shell UVM  
Micro-Kernel 2,311 593 ↓ 22.7% ↓ 0.2080 0.0534↓ 
Shell UVM  
User Space 2,600 47992 ↓ 180.4% ↓ 0.2340 4.3193↓ 
Network UVM 
Micro-Kernel 2,492 412 ↓ 15.3% ↓ 0.2243 0.0371 ↓ 
Network UVM 
User Space 46,715 3877 ↓ 8.0% ↓ 4.2044 0.3489 ↓ 

Table 7 - Summary of Attack Surface Reduction 

The	
  biggest	
  source	
  of	
  concern	
  is	
  user	
  space	
  code,	
  which	
  using	
  Pandey	
  et	
  al.	
  

approach	
   of	
   estimating	
   .09	
   defects	
   per	
   1,000	
   lines	
   of	
   code,	
   shows	
   that	
   it	
  

contains	
  4.5533	
  defects.	
  By	
   segmenting	
   this	
   code	
   across	
  UVMs,	
   an	
   attacker	
  

has	
  a	
  significantly	
  reduced	
  attack	
  surface,	
  which	
  reduces	
  the	
  number	
  of	
  bugs	
  

and	
  ROP	
  gadgets	
  in	
  all	
  cases.	
  Furthermore,	
  the	
  micro-­‐kernels	
  residing	
  below	
  

in	
  all	
  of	
  these	
  instances	
  have	
  also	
  seen	
  significant	
  attack	
  surface	
  reductions.	
  

Lastly,	
   one-­‐way	
   communication	
   channels	
   are	
   tightly	
   enforced	
   and	
   can	
   only	
  

initiated	
  by	
  select	
  UVM	
  processes.	
  Thus,	
  if	
  an	
  attacker	
  did	
  gain	
  a	
  foothold	
  in	
  

either	
   the	
   network	
   or	
   Keyboard/VGA	
   space	
   they	
  would	
   have	
   no	
  means	
   to	
  

compromise	
   any	
   other	
   driver	
   UVM	
   present.	
   The	
   shell	
   UVM	
  would	
   only	
   be	
  

impacted	
  if	
  it	
  were	
  active	
  and	
  no	
  compromise	
  could	
  occur	
  if	
  it	
  was	
  dormant.	
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Working	
  on	
  network	
  time	
  scales	
  the	
  driver	
  UVMs	
  could	
  be	
  refreshed	
  prior	
  to	
  

the	
  user	
  logging	
  into	
  the	
  shell	
  UVM,	
  which	
  would	
  mitigate	
  much	
  of	
  this	
  risk.	
  

	
  

However,	
  the	
  hypervisor	
  did	
  have	
  to	
  grow	
  a	
  small	
  amount	
  to	
  support	
  these	
  

code	
  size	
  reductions.	
  This	
  was	
  deemed	
  an	
  acceptable	
  risk,	
  as	
  the	
  hypervisor	
  

is	
   located	
  below	
  the	
  EPT	
  created	
  semantic	
  gap,	
  which	
  offers	
   it	
  considerable	
  

protection.	
   Moreover,	
   the	
   hypervisor	
   operates	
   solely	
   as	
   an	
   intermediary	
  

between	
   UVM	
   guests.	
   Nothing	
   the	
   hypervisor	
   introspects	
   is	
   ever	
   executed	
  

and	
  mappings	
  only	
  subsist	
  while	
  a	
  core	
  is	
  within	
  the	
  hypervisor.	
  In	
  following	
  

this	
   standard	
   the	
   hypervisor	
   is	
   protected	
   in	
   the	
   event	
   a	
   guest	
   is	
  

compromised.	
  	
  

	
  

Lastly,	
   beyond	
   the	
   reductions	
   the	
   commonly	
   accepted	
   thought	
   of	
   attack	
  

surface	
  has	
  completely	
  changed	
   from	
  the	
  standard	
  monolithic	
  approach.	
  All	
  

that	
  remains	
  is	
  the	
  hypervisor;	
  the	
  low	
  hanging	
  fruits,	
  which	
  are	
  the	
  guests,	
  

have	
   been	
   completely	
   sandboxed	
   through	
   hardware	
   enforced	
   isolation.	
   An	
  

attacker	
  can	
  no	
  longer	
  compromise	
  the	
  network	
  and	
  have	
  immediate	
  access	
  

to	
   the	
   shell.	
   Nor	
   could	
   a	
  malicious	
   user	
   compromise	
   the	
   shell	
   and	
   directly	
  

inject	
  code	
  into	
  a	
  driver.	
  This	
  by	
  itself	
  greatly	
  increases	
  the	
  workload	
  of	
  any	
  

attacker.	
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7.2 Future Work 

This	
   work	
   provides	
   a	
   stepping	
   off	
   point	
   for	
   multiple	
   continued	
   research	
  

efforts.	
   Foremost	
   being	
   the	
   transitioning	
   of	
   UVM	
   concepts	
   to	
   larger	
   scale	
  

industry	
  projects,	
  such	
  as	
  Intel	
  supporting	
  EPT	
  switching	
  for	
  Xen	
  hypervisor	
  

guests	
   [139].	
   This	
   technology	
   is	
   designed	
   to	
   increase	
   the	
   performance	
   of	
  

inter-­‐VM	
  communication,	
  which	
  is	
  provided	
  through	
  VMCALLs	
  in	
  Xen	
  and	
  is	
  

a	
   cornerstone	
   of	
   the	
   UVM	
   work.	
   Coupling	
   a	
   network	
   UVM	
   with	
   this	
  

technology	
   would	
   allow	
   for	
   far	
   greater	
   transfer	
   speeds	
   while	
   maintaining	
  

network	
  isolation.	
  	
  

	
  

Another	
   corporation	
   that	
   is	
   also	
   pursuing	
   similar	
   technology	
   is	
   Docker,	
  

which	
   acquired	
   Unikernel	
   Systems	
   in	
   January	
   2016	
   [140].	
   Their	
   express	
  

intention	
  of	
  this	
  acquisition	
  is	
  to	
  leverage	
  unikernels	
  to	
  build	
  VM	
  containers	
  

that	
   perform	
   small	
   roles.	
   This	
   planned	
   technology	
   is	
   almost	
   a	
   one	
   for	
   one	
  

recreation	
   of	
   UVMs,	
   but	
   with	
   a	
   unikernel	
   replacing	
   the	
   role	
   of	
   the	
   micro-­‐

kernel.	
  	
  

	
  

One	
   area	
   that	
   needs	
   more	
   attention	
   across	
   type	
   1,	
   type	
   2,	
   and	
   UVM	
  

architectures	
  is	
  the	
  creation	
  of	
  guests.	
  This	
  is	
  and	
  largely	
  remains	
  a	
  manually	
  

intensive	
   process	
   of	
   either	
   programming	
   or	
   compiling	
  what	
   is	
   desired	
   into	
  

the	
   guest.	
   Any	
   future	
   work	
   in	
   this	
   field	
   should	
   focus	
   on	
   user-­‐friendly	
  

alternatives	
  that	
  can	
  be	
  used	
  to	
  quickly	
  create	
  a	
  new	
  containerized	
  VM.	
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In	
  terms	
  of	
  diffusive	
  scheduling	
  the	
  surface	
  has	
  only	
  been	
  scratched	
  in	
  terms	
  

of	
   its	
   performance	
   benefits.	
   As	
   this	
   technology	
   can	
   be	
   combined,	
   with	
   the	
  

already	
  existing	
  faculties	
  to	
  run	
  across	
  multiple	
  instances	
  in	
  a	
  cloud	
  [25]	
  and	
  

the	
  resilient	
   inter-­‐process	
  communication	
  mechanisms	
   [141].	
  This	
  will	
   also	
  

reintroduce	
  a	
  greater	
  number	
  of	
  variables	
  to	
  the	
  scheduling	
  algorithm,	
  such	
  

as	
   bandwidth,	
   memory	
   usage,	
   and	
   other	
   related	
   distributed	
   computing	
  

measures.	
   Combining	
   with	
   greater	
   computing	
   resources	
   will	
   only	
   improve	
  

multiple	
   process	
   performance	
   demonstrated	
   in	
   this	
   thesis	
   further.	
   Since	
   it	
  

has	
   already	
   been	
   proven	
   that	
   diffusion	
   can	
   be	
   extended	
   “to	
   operate	
  across	
  

multiple	
  processors	
  using	
  only	
  local	
  nearest	
  neighbor	
  communication	
  with	
  well	
  

understood	
  global	
  convergence	
  and	
  termination	
  properties”	
  [142].	
  	
  

	
  

This	
   also	
   opens	
   the	
   possibility	
   of	
   porting	
   the	
   diffusive	
   scheduler	
   to	
   the	
  

hypervisor.	
   Which	
   would	
   allow	
   the	
   ability	
   to	
   balance	
   multiple	
   user	
   UVMs	
  

across	
  many	
  servers.	
   In	
   turn	
   this	
   creates	
  new	
  and	
   interesting	
  challenges	
   in	
  

determining	
  what	
  setups	
  should	
  be	
  used	
  across	
  this	
  distributed	
  network	
  for	
  

driver	
  and	
  user	
  UVMs.	
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Appendix A – Stage One Bootloader Code 

###	
  boot1.S	
  

###	
  This	
  file	
  is	
  placed	
  at	
  the	
  start	
  of	
  a	
  *slice*,	
  and	
  is	
  called	
  by	
  

###	
  the	
  MBR's	
  512-­‐byte	
  block.	
  For	
  compatibility	
  reasons,	
  this	
  file	
  is	
  

###	
  also	
  exactly	
  512	
  bytes.	
  

###	
  

###	
  Copyright	
  (c)	
  2011	
  Morgon	
  Kanter	
  

###	
  All	
  rights	
  reserved.	
  

###	
  Redistribution	
  and	
  use	
  in	
  source	
  and	
  binary	
  forms	
  are	
  freely	
  

###	
  permitted	
  provided	
  that	
  the	
  above	
  copyright	
  notice	
  and	
  this	
  

###	
  paragraph	
  and	
  the	
  following	
  disclaimer	
  are	
  duplicated	
  in	
  all	
  

###	
  such	
  forms.	
  

###	
  

###	
  This	
  software	
  is	
  provided	
  "AS	
  IS"	
  and	
  without	
  any	
  express	
  or	
  

###	
  implied	
  warranties,	
  including,	
  without	
  limitation,	
  the	
  implied	
  

###	
  warranties	
  of	
  merchantability	
  and	
  fitness	
  for	
  a	
  particular	
  

###	
  purpose.	
  

	
  

###	
  Make	
  sure	
  this	
  is	
  linked	
  with	
  -­‐Ttext=0x7c00,	
  which	
  is	
  the	
  address	
  

###	
  that	
  both	
  the	
  MBR	
  gets	
  loaded	
  in	
  from	
  the	
  BIOS,	
  and	
  the	
  address	
  

###	
  where	
  the	
  actual	
  MBR	
  loads	
  this	
  in.	
  

###	
  

###	
  Just	
  as	
  when	
  we're	
  loaded	
  up	
  by	
  the	
  MBR,	
  the	
  drive	
  entry	
  will	
  be	
  

###	
  placed	
  in	
  %dl	
  and	
  our	
  slice	
  from	
  the	
  main	
  table	
  will	
  be	
  placed	
  in	
  

###	
  %si.	
  

###	
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###	
  Note	
  if	
  you	
  go	
  to	
  disassemble	
  this	
  with	
  objdump,	
  the	
  output	
  will	
  

###	
  almost	
  certainly	
  be	
  wrong	
  for	
  some	
  sections.	
  This	
  is	
  because	
  we	
  

###	
  mix	
  16-­‐,	
  32-­‐,	
  and	
  64-­‐bit	
  code	
  in	
  the	
  same	
  file.	
  This	
  is	
  all	
  very	
  

###	
  clearly	
  delimited	
  by	
  the	
  .code16,	
  .code32,	
  and	
  .code64	
  designators	
  

###	
  given	
  at	
  those	
  points	
  in	
  this	
  file.	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Global	
  symbols	
  

	
  	
  	
  	
  	
  	
  	
  	
  .globl	
  gdt_long	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Memory	
  locations	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  BOOT_STACK,0x7bf8	
  	
  	
   #	
  location	
  of	
  the	
  stack	
  "bottom"...	
  the	
  stack	
  grows	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  down	
  so	
  this	
  is	
  the	
  highest	
  addr	
  of	
  the	
  stack.	
  It	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  would	
  hit	
  the	
  partition	
  table	
  if	
  it	
  overran.	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  MEM_LOADED,0x7c00	
  	
  	
   #	
  Where	
  we're	
  loaded	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  MEM_DLBL,0x7e00	
  	
  	
  	
  	
   #	
  Start	
  of	
  disklabel	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  DLBL_BBASE,0x7e28	
  	
  	
   #	
  "bbase"	
  in	
  disklabel	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  PART_TBL,0x7be	
  	
  	
  	
  	
  	
   #	
  Partition	
  table	
  for	
  the	
  disk	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  NUM_PART,0x88	
  	
  	
  	
  	
  	
  	
   #	
  Offset	
  to	
  number	
  of	
  partitions	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Place	
  to	
  put	
  the	
  available	
  memory.	
  Be	
  sure	
  not	
  to	
  use	
  the	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  first	
  low	
  0x500	
  bytes	
  of	
  this	
  (it's	
  the	
  IVT	
  etc).	
  This	
  is	
  a	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  many-­‐entry	
  table,	
  with	
  24-­‐byte	
  entries,	
  each	
  with	
  the	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  following	
  format:	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  First	
  qword	
  =	
  Base	
  address	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Second	
  qword	
  =	
  Length	
  of	
  "region"	
  (if	
  0,	
  ignore	
  the	
  entry).	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Next	
  dword	
  =	
  Region	
  "type"	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  	
  	
  *	
  Type	
  1:	
  Usable	
  (normal)	
  RAM	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  	
  	
  *	
  Type	
  2:	
  Reserved	
  -­‐	
  unusable	
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  ##	
  	
  	
  *	
  Type	
  3:	
  ACPI	
  reclaimable	
  memory	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  	
  	
  *	
  Type	
  4:	
  ACPI	
  NVS	
  memory	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  	
  	
  *	
  Type	
  5:	
  Area	
  containing	
  bad	
  memory	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Next	
  dword	
  =	
  ACPI	
  3.0	
  extended	
  attributes	
  bitfield	
  (if	
  24	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  bytes	
  are	
  returned,	
  but	
  we	
  increment	
  24	
  bytes	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  regardless).	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  	
  	
  *	
  Bit	
  0	
  of	
  the	
  extended	
  attributes	
  field	
  indicates	
  if	
  the	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  	
  	
  	
  	
  entire	
  entry	
  should	
  be	
  ignored.	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  	
  	
  *	
  Bit	
  1	
  of	
  the	
  extended	
  attributes	
  field	
  indicates	
  if	
  the	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  	
  	
  	
  	
  entry	
  is	
  non-­‐volatile	
  (whatever	
  that	
  means).	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  This	
  information	
  was	
  taken	
  from:	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  http://wiki.osdev.org/Detecting_Memory_%28x86%29	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  MEM_ENTRIES,0x802	
  	
  	
  	
  	
  	
   #	
  Number	
  of	
  mem	
  table	
  entries	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  MEMTABLE,0x804	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Mem	
  table	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Basic	
  page	
  table	
  locations	
  for	
  baby's	
  first	
  page	
  tables	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  PML4T,0x1000	
  	
  	
  	
  	
  	
  	
  	
   #	
  Page	
  map	
  level	
  4	
  table	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  PDPT,0x2000	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  Page	
  directory	
  pointer	
  table	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  PDT,0x3000	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Page	
  directory	
  table	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  PT,0x4000	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Page	
  table	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Constants	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  PARTSIZE,0x10	
  	
  	
  	
  	
  	
  	
   #	
  Size	
  of	
  partition	
  entry	
  in	
  label	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  MAGIC,0xaa55	
  	
  	
  	
  	
  	
  	
  	
   #	
  Magic:	
  bootable	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  EMAGIC,0x534D4150	
  	
  	
   #	
  e820	
  Magic	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  SEL_CODE,0x08	
  	
  	
  	
  	
  	
  	
   #	
  Code	
  selector	
  

	
  	
  	
  	
  	
  	
  	
  	
  .set	
  SEL_LCODE,0x08	
  	
  	
  	
  	
  	
   #	
  Code	
  selector,	
  long	
  mode	
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  .globl	
  start	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   #	
  Entry	
  point	
  

	
  	
  	
  	
  	
  	
  	
  	
  .code16	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   #	
  Real	
  mode,	
  for	
  now	
  

start:	
  

	
  	
  	
  	
  	
  	
  	
  	
  xorw	
  %ax,%ax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Zero	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%es	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  Address	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%ds	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  data	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%ss	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  Set	
  up	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  $MEM_LOADED,%sp	
  	
  #	
  	
  stack	
  

	
  

mmap.0:	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  $MEMTABLE-­‐24,%di	
  	
  	
   #	
  Memory	
  table	
  

	
  	
  	
  	
  	
  	
  	
  	
  xorl	
  %ebx,%ebx	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Zero	
  

	
  	
  	
  	
  	
  	
  	
  	
  pushw	
  %si	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Save	
  %si	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%si	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Zero	
  

mmap:	
  

	
  	
  	
  	
  	
  	
  	
  	
  addw	
  $24,%di	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Set	
  next	
  map	
  entry	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  $0xe820,%eax	
  	
  	
  	
  	
  	
  	
  	
   #	
  Get	
  memory	
  map	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  $24,%ecx	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Buffer	
  size	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  $EMAGIC,%edx	
  	
  	
  	
  	
  	
  	
  	
   #	
  Signature	
  

	
  	
  	
  	
  	
  	
  	
  	
  int	
  $0x15	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   #	
  Get	
  memory	
  map	
  

	
  	
  	
  	
  	
  	
  	
  	
  jc	
  mmap.1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Method	
  #1	
  of	
  marking	
  finished	
  

	
  	
  	
  	
  	
  	
  	
  	
  cmpl	
  $EMAGIC,%eax	
  	
  	
  	
  	
  	
  	
  	
   #	
  Error?	
  

	
  	
  	
  	
  	
  	
  	
  	
  jne	
  mem_err	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Yes	
  

	
  	
  	
  	
  	
  	
  	
  	
  incw	
  %si	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   #	
  Total	
  number	
  of	
  entries	
  

	
  	
  	
  	
  	
  	
  	
  	
  cmpl	
  $0x0,%ebx	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  Method	
  #2	
  of	
  marking	
  finished	
  

	
  	
  	
  	
  	
  	
  	
  	
  jne	
  mmap	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Not	
  finished	
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  ##	
  Now	
  that	
  we	
  have	
  the	
  memory	
  map	
  set	
  up,	
  let's	
  see	
  about	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  entering	
  protected	
  mode	
  (in	
  the	
  32-­‐bit	
  part	
  of	
  file).	
  

mmap.1:	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %si,MEM_ENTRIES	
  	
  	
  	
  	
   #	
  Number	
  of	
  memtable	
  entries	
  

	
  	
  	
  	
  	
  	
  	
  	
  popw	
  %si	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Restore	
  %si	
  

	
  	
  	
  	
  	
  	
  	
  	
  jmp	
  postmem	
  

	
  

mem_err:	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  $msg_mem,%si	
  	
  	
  	
  	
  	
  	
  	
   #	
  "Memory	
  detection	
  error"	
  

	
  	
  	
  	
  	
  	
  	
  	
  jmp	
  putstr	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Error	
  out	
  

	
  

###	
  Output	
  an	
  ASCIZ	
  string	
  to	
  the	
  console	
  via	
  the	
  BIOS.	
  

putstr.0:	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  $0x7,%bx	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Page:attribute	
  

	
  	
  	
  	
  	
  	
  	
  	
  movb	
  $0xe,%ah	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  BIOS:	
  Display	
  

	
  	
  	
  	
  	
  	
  	
  	
  int	
  $0x10	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   #	
  	
  character	
  

putstr:	
  

	
  	
  	
  	
  	
  	
  	
  	
  lodsb	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   #	
  Get	
  character	
  

	
  	
  	
  	
  	
  	
  	
  	
  testb	
  %al,%al	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  End	
  of	
  string?	
  

	
  	
  	
  	
  	
  	
  	
  	
  jnz	
  putstr.0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  No	
  

putstr.1:	
  

	
  	
  	
  	
  	
  	
  	
  	
  jmp	
  putstr.1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Await	
  reset.	
  

	
  

msg_mem:.asciz	
  "Memory	
  detection	
  error"	
  

	
  

###	
  The	
  GDT.	
  This	
  table	
  looks	
  retarded:	
  

###	
  	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
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###	
  |0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  15|16	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  31|	
  

###	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  

###	
  |	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Limit	
  0:15	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  |	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Base	
  0:15	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  |	
  

###	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  

###	
  |32	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  39|40	
  	
  	
  	
  	
  	
  	
  	
  	
  47|48	
  	
  	
  	
  	
  	
  	
  	
  51|52	
  	
  	
  	
  	
  	
  	
  55|56	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  63|	
  

###	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  

###	
  |Base	
  16:23|Access	
  Byte|Limit	
  16:19|Flags|Base	
  24:31|	
  

###	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  

###	
  

###	
  The	
  bit	
  arithmetic	
  here	
  is	
  horrible.	
  The	
  access	
  byte	
  and	
  flags	
  go	
  

###	
  in	
  backwards	
  from	
  what	
  you'd	
  expect	
  (they	
  are	
  defined	
  bitwise	
  

###	
  starting	
  from	
  7	
  and	
  going	
  to	
  0,	
  so	
  when	
  you	
  specify	
  it	
  you	
  have	
  to	
  

###	
  reverse	
  so	
  it	
  starts	
  at	
  0	
  and	
  goes	
  to	
  7...).	
  

gdt:	
  

	
  	
  	
  	
  	
  	
  	
  	
  .word	
  0x0,	
  0x0,	
  0x0,	
  0x0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Null	
  entry	
  

	
  	
  	
  	
  	
  	
  	
  	
  .word	
  0xffff,	
  0x0,	
  0x9a00,	
  0x00cf	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Code	
  entry	
  (SEL_CODE)	
  

	
  	
  	
  	
  	
  	
  	
  	
  .word	
  0xffff,	
  0x0,	
  0x9200,	
  0x00cf	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Data	
  entry	
  

	
  	
  	
  	
  	
  	
  	
  	
  .word	
  0xffff,	
  0x0,	
  0xfa00,	
  0x00cf	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  User	
  code	
  entry	
  

	
  	
  	
  	
  	
  	
  	
  	
  .word	
  0xffff,	
  0x0,	
  0xf200,	
  0x00cf	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  User	
  data	
  entry	
  

gdt_48:	
  

	
  	
  	
  	
  	
  	
  	
  	
  .word	
  .-­‐gdt-­‐1	
  

	
  	
  	
  	
  	
  	
  	
  	
  .long	
  gdt	
  

###	
  If	
  we're	
  short	
  on	
  space,	
  we	
  can	
  do	
  the	
  following	
  by	
  modifying	
  the	
  

###	
  memory	
  at	
  gdt	
  instead	
  of	
  duplicating	
  it	
  all	
  and	
  save	
  about	
  20	
  

###	
  bytes	
  in	
  the	
  process.	
  

###	
  NOTE:	
  If	
  this	
  expands/contracts,	
  update	
  GDT_SIZE	
  in	
  constants.h	
  

gdt_long:	
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  .word	
  0x0,	
  0x0,	
  0x0,	
  0x0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Null	
  entry	
  

	
  	
  	
  	
  	
  	
  	
  	
  .word	
  0xffff,	
  0x0,	
  0x9a00,	
  0x00af	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Code	
  entry	
  (SEL_LCODE)	
  

	
  	
  	
  	
  	
  	
  	
  	
  .word	
  0xffff,	
  0x0,	
  0x9200,	
  0x00cf	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Data	
  entry	
  

	
  	
  	
  	
  	
  	
  	
  	
  .word	
  0xffff,	
  0x0,	
  0xfa00,	
  0x00af	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  User	
  code	
  entry	
  

	
  	
  	
  	
  	
  	
  	
  	
  .word	
  0xffff,	
  0x0,	
  0xf200,	
  0x00cf	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  User	
  data	
  entry	
  

	
  	
  	
  	
  	
  	
  	
  	
  .word	
  0x0067,	
  0x6400,	
  0x8900,	
  0x0010	
  	
  #	
  TSS,	
  depends	
  on	
  MEM_TSS_BASE	
  

	
  	
  	
  	
  	
  	
  	
  	
  .word	
  0x0,	
  0x0,	
  0x0,	
  0x0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  TSS	
  Entry	
  Part	
  2	
  

gdtlong_48:	
  

	
  	
  	
  	
  	
  	
  	
  	
  .word	
  .-­‐gdt_long-­‐1	
  

	
  	
  	
  	
  	
  	
  	
  	
  .long	
  gdt_long	
  

	
  

###	
  Do	
  things	
  that	
  we	
  need	
  to	
  enter	
  protected	
  mode.	
  

postmem:	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Set	
  video	
  mode	
  to	
  80x25	
  for	
  basic	
  console.	
  

	
  	
  	
  	
  	
  	
  	
  	
  mov	
  $3,%ax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Video	
  mode	
  80x25x16	
  

	
  	
  	
  	
  	
  	
  	
  	
  int	
  $0x10	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   #	
  Interrupt	
  (set	
  video	
  mode)	
  

	
  	
  	
  	
  	
  	
  	
  	
  mov	
  $0x1003,%ax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Toggle	
  blinking	
  

	
  	
  	
  	
  	
  	
  	
  	
  mov	
  $0,%bx	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Blinking	
  disabled	
  

	
  	
  	
  	
  	
  	
  	
  	
  int	
  $0x10	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   #	
  Interrupt	
  (set	
  video	
  mode)	
  

loadgdt:	
  

	
  	
  	
  	
  	
  	
  	
  	
  lgdt	
  gdt_48	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Load	
  gdt	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Don't	
  set	
  up	
  the	
  selectors	
  yet,	
  they	
  push	
  every	
  data	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  reference	
  16	
  bytes	
  higher	
  because,	
  since	
  we	
  aren't	
  yet	
  in	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  protected	
  mode,	
  they	
  aren't	
  "selectors",	
  they	
  are	
  still	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  just	
  real-­‐mode	
  segment	
  offsets!	
  

loadidt:	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  We	
  don't	
  have	
  nearly	
  the	
  amount	
  of	
  space	
  here	
  to	
  set	
  up	
  a	
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  ##	
  desirable	
  interrupt	
  table!	
  Defer	
  it	
  for	
  when	
  we	
  go	
  to	
  the	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  C	
  boot	
  code.	
  

loadtss:	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Not	
  really	
  interesting	
  to	
  set	
  up	
  the	
  TSS	
  here	
  either,	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  because	
  we	
  have	
  no	
  interrupts.	
  Let	
  the	
  C	
  boot	
  code	
  do	
  this,	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  when	
  it	
  handles	
  interrupts.	
  

protected.0:	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Now	
  we	
  can	
  set	
  up	
  what	
  will	
  become	
  the	
  selectors,	
  since	
  we	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  have	
  no	
  more	
  data	
  references	
  to	
  make.	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  $0x10,%ax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Set	
  segment	
  selectors	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%ds	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  data	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%ss	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  stack	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%es	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  es	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%fs	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  fs	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%gs	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  gs	
  

	
  	
  	
  	
  	
  	
  	
  	
  cli	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   #	
  Disable	
  interrupts	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  %cr0,%eax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  Control	
  Register	
  0	
  to	
  %eax	
  

	
  	
  	
  	
  	
  	
  	
  	
  orb	
  $0x1,%al	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Set	
  the	
  lowest	
  bit	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  %eax,%cr0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  %eax	
  to	
  Control	
  Register	
  0	
  

	
  	
  	
  	
  	
  	
  	
  	
  ljmp	
  $SEL_CODE,$protected	
   #	
  Protected	
  mode	
  

	
  	
  	
  	
  	
  	
  	
  	
  .code32	
  

protected:	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Now	
  we're	
  in	
  protected	
  mode.	
  Set	
  up	
  long	
  mode.	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Have	
  to	
  re-­‐set	
  the	
  segment	
  selectors	
  here,	
  so	
  they	
  are	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  considered	
  32	
  bit	
  (otherwise,	
  any	
  time	
  we	
  set	
  data	
  it	
  will	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  fail).	
  I'm	
  not	
  sure	
  if	
  this	
  is	
  a	
  bug	
  in	
  QEMU	
  or	
  if	
  it	
  works	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  this	
  way	
  on	
  bare	
  hardware	
  as	
  well.	
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  movw	
  $0x10,%ax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Set	
  segment	
  selectors	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%ds	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  data	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%ss	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  stack	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%es	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  es	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%fs	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  fs	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%gs	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  gs	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  %cr4,%eax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  Control	
  Register	
  4	
  to	
  %eax	
  

	
  	
  	
  	
  	
  	
  	
  	
  bts	
  $5,%eax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Set	
  PAE	
  

	
  	
  	
  	
  	
  	
  	
  	
  bts	
  $7,%eax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Set	
  pages	
  golbal	
  enable	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  %eax,%cr4	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  %eax	
  to	
  Control	
  Register	
  4	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  $0xc0000080,%ecx	
  	
  	
  	
   #	
  EFER	
  register	
  

	
  	
  	
  	
  	
  	
  	
  	
  rdmsr	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   #	
  EFER	
  to	
  %eax	
  

	
  	
  	
  	
  	
  	
  	
  	
  bts	
  $8,%eax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Set	
  IA-­‐32e	
  (long	
  mode)	
  

	
  	
  	
  	
  	
  	
  	
  	
  bts	
  $11,%eax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Allow	
  No-­‐EXecute	
  bit	
  

	
  	
  	
  	
  	
  	
  	
  	
  wrmsr	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   #	
  %eax	
  to	
  EFER	
  

paging.0:	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Set	
  up	
  64-­‐bit	
  paging	
  -­‐-­‐	
  required	
  before	
  we're	
  actually	
  in	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  long	
  mode.	
  The	
  first	
  1	
  MB	
  will	
  be	
  identity-­‐mapped.	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  $PML4T,%edi	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Page-­‐map	
  level	
  4	
  table	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  %edi,%cr3	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  in	
  base	
  table	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  $4096,%ecx	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  4	
  kb*4	
  count	
  

	
  	
  	
  	
  	
  	
  	
  	
  xorl	
  %eax,%eax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Zero	
  

	
  	
  	
  	
  	
  	
  	
  	
  rep	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   #	
  Clear	
  

	
  	
  	
  	
  	
  	
  	
  	
  stosl	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   #	
  	
  PML4T	
  

paging.1:	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Set	
  the	
  first	
  entry	
  of	
  each	
  page	
  table	
  level	
  to	
  point	
  to	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  the	
  next	
  level.	
  This	
  handles	
  the	
  pointing	
  of	
  PML4T	
  to	
  PDPT,	
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  ##	
  PDPT	
  to	
  PDT,	
  and	
  PDT	
  to	
  PT.	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  $3,%ecx	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Count	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  %cr3,%edi	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  Destination	
  (Page	
  tables)	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  $0x1000,%eax	
  	
  	
  	
  	
  	
  	
  	
   #	
  Increment	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  $0x2003,%ebx	
  	
  	
  	
  	
  	
  	
  	
   #	
  Page	
  present,	
  read/writable	
  

paging.2:	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  %ebx,(%edi)	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Point	
  to	
  next	
  paging	
  level	
  

	
  	
  	
  	
  	
  	
  	
  	
  addl	
  %eax,%ebx	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  Next	
  level	
  

	
  	
  	
  	
  	
  	
  	
  	
  addl	
  %eax,%edi	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Next	
  level	
  

	
  	
  	
  	
  	
  	
  	
  	
  loop	
  paging.2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  For	
  each	
  page	
  level	
  

paging.3:	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Set	
  each	
  page	
  of	
  the	
  PT	
  level	
  to	
  be	
  read/writable.	
  Note	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  that	
  %edi	
  now	
  points	
  to	
  the	
  PT	
  level	
  thanks	
  to	
  the	
  loop.	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  $0x00000103,%ebx	
  	
  	
  	
   #	
  Page	
  present,	
  read/writable	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  $512,%ecx	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Number	
  of	
  pages	
  in	
  PT	
  level	
  

paging.4:	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  %ebx,(%edi)	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Set	
  present,	
  read/writable	
  

	
  	
  	
  	
  	
  	
  	
  	
  addl	
  $0x1000,%ebx	
  	
  	
  	
  	
  	
  	
  	
   #	
  Next	
  4096	
  bytes	
  

	
  	
  	
  	
  	
  	
  	
  	
  addl	
  $8,%edi	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Next	
  page	
  entry	
  

	
  	
  	
  	
  	
  	
  	
  	
  loop	
  paging.4	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  For	
  each	
  page	
  entry	
  

paging.5:	
  

	
  

Recursive.Paging:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #Recursive	
  paging	
  is	
  set	
  up	
  here	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  $PML4T,	
  %eax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #Move	
  phys	
  address	
  of	
  PML4T	
  into	
  eax	
  

	
  	
  	
  	
  	
  	
  	
  	
  addl	
  $0x1000,	
  %eax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #Add	
  Page	
  Size	
  to	
  move	
  to	
  end	
  of	
  PML4T	
  

	
  	
  	
  	
  	
  	
  	
  	
  subl	
  $0x8,	
  %eax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #Subtract	
  to	
  move	
  to	
  last	
  entry	
  of	
  PML4T	
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  movl	
  $PML4T,	
  %ebx	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #Move	
  Phys	
  address	
  of	
  PML4T	
  into	
  ebx	
  

	
  	
  	
  	
  	
  	
  	
  	
  addl	
  $0x3,	
  %ebx	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #Add	
  page	
  permission	
  bits	
  Page	
  Present,	
  read/write	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  mov	
  %ebx,	
  (%eax)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #Do	
  the	
  mapping	
  into	
  last	
  entry	
  of	
  PML4T	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##Turn	
  on	
  paging	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  %cr0,%eax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  Control	
  Register	
  4	
  to	
  %eax	
  

	
  	
  	
  	
  	
  	
  	
  	
  orl	
  $0x80000000,%eax	
  	
  	
  	
  	
   #	
  Enable	
  paging	
  

	
  	
  	
  	
  	
  	
  	
  	
  movl	
  %eax,%cr0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  %eax	
  to	
  Control	
  Register	
  4	
  

	
  	
  	
  	
  	
  	
  	
  	
  lgdt	
  gdtlong_48	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Load	
  long-­‐mode	
  gdt	
  

	
  	
  	
  	
  	
  	
  	
  	
  ljmp	
  $SEL_LCODE,$long	
  	
  	
  	
   #	
  Enter	
  long	
  mode	
  

	
  	
  	
  	
  	
  	
  	
  	
  .code64	
  

long:	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  	
  Welcome	
  to	
  long	
  mode.	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  As	
  above,	
  reload	
  the	
  segment	
  registers.	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  $0x10,%ax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Set	
  segment	
  selectors	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%ds	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  data	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%ss	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  stack	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%es	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  es	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%fs	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  fs	
  

	
  	
  	
  	
  	
  	
  	
  	
  movw	
  %ax,%gs	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  	
  gs	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Enable	
  SSE	
  (required	
  for	
  stuff	
  like	
  clang	
  varargs),	
  and	
  other	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  things	
  that	
  should	
  be	
  turned	
  on.	
  

	
  	
  	
  	
  	
  	
  	
  	
  movq	
  %cr0,%rax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Control	
  register	
  4	
  to	
  %eax	
  

	
  	
  	
  	
  	
  	
  	
  	
  bts	
  $1,%rax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Set	
  MP	
  bit	
  

	
  	
  	
  	
  	
  	
  	
  	
  btr	
  $2,%rax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Clear	
  EM	
  bit	
  

	
  	
  	
  	
  	
  	
  	
  	
  bts	
  $5,%rax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Allow	
  native	
  (new)	
  FPU	
  error	
  reporting	
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  movq	
  %rax,%cr0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  %eax	
  to	
  control	
  register	
  0	
  

	
  	
  	
  	
  	
  	
  	
  	
  movq	
  %cr4,%rax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Control	
  register	
  4	
  to	
  %eax	
  

	
  	
  	
  	
  	
  	
  	
  	
  bts	
  $9,%eax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Set	
  OSFXSR	
  bit	
  

	
  	
  	
  	
  	
  	
  	
  	
  bts	
  $10,%eax	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Set	
  OSXMMEXCPT	
  bit	
  

	
  	
  	
  	
  	
  	
  	
  	
  movq	
  %rax,%cr4	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  %eax	
  to	
  control	
  register	
  4	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  Now	
  let's	
  return	
  to	
  C	
  and	
  be	
  done	
  with	
  this.	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  The	
  boot	
  block	
  base	
  is	
  loaded	
  in	
  as	
  part	
  of	
  the	
  disklabel,	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  and	
  we	
  know	
  the	
  disklabel	
  starts	
  right	
  after	
  us	
  in	
  the	
  code.	
  

	
  	
  	
  	
  	
  	
  	
  	
  ##	
  So,	
  find	
  the	
  boot	
  block	
  base	
  and	
  jump	
  there.	
  

	
  	
  	
  	
  	
  	
  	
  	
  movq	
  DLBL_BBASE,%rbx	
  	
  	
  	
  	
   #	
  Boot	
  block	
  base	
  (bytes)	
  

	
  	
  	
  	
  	
  	
  	
  	
  addq	
  $MEM_DLBL,%rbx	
  	
  	
  	
  	
  	
   #	
  Add	
  start	
  of	
  disk	
  label	
  

	
  	
  	
  	
  	
  	
  	
  	
  subq	
  $0x200,%rbx	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Subtract	
  the	
  first	
  512	
  bytes	
  (included	
  in	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   #	
  	
  disklabel	
  for	
  some	
  reason)	
  

	
  	
  	
  	
  	
  	
  	
  	
  movq	
  $BOOT_STACK,%rsp	
  	
  	
  	
   #	
  Reset	
  the	
  stack	
  pointer	
  to	
  a	
  value	
  clang	
  likes	
  

	
  	
  	
  	
  	
  	
  	
  	
  jmp	
  *%rbx	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Into	
  the	
  C	
  entry	
  point	
  

	
  

###	
  Fill	
  the	
  rest	
  of	
  the	
  512	
  bytes	
  with	
  NOP	
  and	
  make	
  bootable.	
  

	
  	
  	
  	
  	
  	
  	
  	
  .org	
  0x1FE,0x90	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Fill	
  the	
  rest	
  with	
  NOPs	
  

	
  	
  	
  	
  	
  	
  	
  	
  .word	
  MAGIC	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   #	
  Bootable	
  magic	
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Appendix B – Register Layouts 
	
  

Control Register 0 
Bit Label & Description 
0 PE – If 1, enables 32-bit protected mode 
1 MP – Controls the behavior of wait and fwait instructions  
2 EM – Allows saving  
3 TS – Allows saving floating point context on hardware switches 
4 ET – Reserved for us in older Intel processors 
5 NE – If 1, enables internal x87 floating point error reporting 
16 WP – If 1, ring 0 code can write to pages marked read only 
18 AM – If 1, processor checks alignment on certain operations 
29 NW – If 1, disables write-back caching 
30 CD – If 1, disables memory caches 
31 PG – If 1, enables paging 

 
Control Register 3 

Bit Label & Description 
0-2 Ignored 
3 PWT –  
4 PCD –  
5-11 Ignored 
12-48 Address of PML4 Table 
49-63 Reserved for future use 

 
Control Register 4 

Bit Label & Description 
0 VME – If 1, enables virtual interrupts in virtual-8086 mode 
1 PVI – If 1, enables virtual interrupts in protected mode 
2 TSD – If 1, only kernel mode can read the hardware timestamp 
3 DE – Controls the usage of the debug registers 
4 PSE – If 1, enables 4MB pages --- If 0, enables 4KB pages 
5 PAE – If 1, enables paging to produce physical addresses greater than 32 bits 
6 MCE – If 1, enables machine check exceptions 
7 PGE – If 1, allows global pages with special caching properties 
8 PCE – If 1, allows user-land code to use performance counters 
9 OSFXSR – If 1, enables fxsave and fxstor instructions 
10 OSXMMEXCPT – Controls operation of SSE instructions 
13 VMXE – If 1, enables VMX instructions 
14 SMXE – If 1, enables supervisor mode 
16 FSGSBASE – Controls rdsfbase, rdgsbase, wrfsbase, and rfsgsbase instructions 
17 PCIDE – If 1, enables process-context identifiers 
18 OSXSAVE  - Controls operation of xsave, xstor, and xgetbv instructions 
20 SMEP – If 1, prevents kernel mode from executing user-mode code 
21 SMAP – If 1, prevents kernel mode from accessing user-mode data 
22 PKE – IF 1, enables x86-64 paging to associate linear addresses with protection keys 

 
Extended Feature Enable Register MSR 

Bit Label & Description 
0 SCE – If 1, enable fast system call instructions 
8 LME – If 1, enables 64-bit long mode 
10 LMA – Indicates if long mode is active 
11 NXE – IF 1, enables the use of the no-execute bit in page tables 
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APPENDIX C – Macros for paging 

 

 

 

 

 

 

 



 

	
   171	
  

Appendix D – Paging Structures & Frame Array Initialization C 

Code 

 

 

 

void	
  setup_table(	
  void	
  *phys,	
  void	
  *vaddr,	
  uint64_t	
  flags)	
  {	
  

	
  

	
  	
  union	
  pt_entry	
  *entry	
  =	
  (union	
  pt_entry*)vaddr;	
  

	
  

	
  	
  kmemset(entry,	
  0,	
  sizeof(union	
  pt_entry));	
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  entry-­‐>present	
  =	
  1;	
  

	
  	
  entry-­‐>rw	
  =	
  (flags	
  &	
  PG_RW)	
  ?	
  1	
  :	
  0;	
  

	
  	
  entry-­‐>nx	
  =	
  (flags	
  &	
  PG_NX)	
  ?	
  1	
  :	
  0;	
  

	
  	
  entry-­‐>us	
  =	
  (flags	
  &	
  PG_USER)	
  ?	
  1	
  :	
  0;	
  

	
  	
  ((union	
  page*)entry)-­‐>global	
  =	
  (	
  flags	
  &	
  PG_GLOBAL	
  )	
  ?	
  1	
  :	
  0;	
  

	
  	
  entry-­‐>addr	
  =	
  ADDR2TABLE((uint64_t)phys);	
  

	
  	
  return;	
  

}	
  

	
  

	
  

void	
  frame_array_init(void)	
  {	
  

	
  

	
  	
  struct	
  memmap	
  *block	
  =	
  (struct	
  memmap	
  *)0x804;	
  

	
  	
  struct	
  memmap	
  *oldblock;	
  

	
  	
  uint16_t	
  *numblocks	
  =	
  (uint16_t	
  *)x802;	
  

	
  	
  uint64_t	
  memory_present,	
  frame_position;	
  	
  

	
  	
  int	
  framearray_pages;	
  	
  

	
  	
  int	
  i,	
  j;	
  

	
  

	
  	
  struct	
  page_map_level_4_table	
  *pml4t;	
  

	
  	
  struct	
  page_directory_pointer_table	
  *pdpt;	
  

	
  	
  struct	
  page_directory	
  *pd;	
  

	
  	
  struct	
  page_table	
  *pt;	
  

	
  	
  union	
  page	
  *page;	
  

	
  

	
  	
  int	
  pml4t_idx;	
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  int	
  pdpt_idx;	
  

	
  	
  int	
  pd_idx;	
  

	
  	
  int	
  pt_idx;	
  

	
  	
  uint64_t	
  framearray_idx;	
  

	
  	
  	
  

	
  	
  int	
  pts,	
  pds,	
  pdpts;	
  

	
  

	
  	
  int	
  hole_length;	
  

	
  

	
  	
  /**	
  This	
  calculates	
  the	
  total	
  number	
  of	
  bytes	
  available	
  in	
  ram	
  on	
  the	
  	
  system	
  by	
  taking	
  the	
  last	
  

block	
  base	
  address	
  and	
  adding	
  its	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  length	
  to	
  it.	
  The	
  blocks	
  of	
  memory	
  on	
  the	
  sytem	
  given	
  to	
  us	
  by	
  the	
  bios	
  from	
  boot1.s	
  **/	
  

	
  	
  memory_present	
  =	
  block[(*numblocks)-­‐1].base	
  +	
  block[(*numblocks)-­‐1].length;	
  

	
  

	
  	
  /**	
  set	
  the	
  number	
  of	
  entries	
  that	
  will	
  be	
  in	
  the	
  array	
  */	
  

	
  	
  frame_array_len	
  =	
  memory_present	
  /	
  PAGE_SIZE;	
  /*Note	
  PAGE_SIZE	
  =	
  0x1000*/	
  

	
  

	
  	
  /**	
  find	
  the	
  number	
  of	
  pages	
  needed	
  to	
  store	
  the	
  array	
  */	
  

	
  	
  framearray_pages	
   =	
   ((memory_present/PAGE_SIZE)	
   *	
   sizeof(struct	
   frame_array_entry_t))	
   /	
  

PAGE_SIZE;	
  

	
  

	
  	
  if((memory_present/PAGE_SIZE)	
  %	
  framearray_pages)	
  

	
  	
  	
  	
  framearray_pages	
  +=	
  1;	
  

	
  

	
  	
  /**	
  add	
  the	
  number	
  of	
  frames	
  that	
  will	
  be	
  needed	
  for	
  paging	
  structs	
  	
  to	
  address	
  the	
  frame	
  array	
  

*/	
  

	
  	
  pts	
  =	
  framearray_pages	
  %	
  512	
  ?	
  (framearray_pages	
  /	
  512)	
  +	
  1	
  :	
  framearray_pages	
  /	
  512;	
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  pts	
  +=	
  1;	
  /*	
  in	
  case	
  it	
  crosses	
  a	
  pt	
  boundary	
  virtually	
  */	
  

	
  

	
  	
  pds	
  =	
  pts	
  %	
  512	
  ?	
  (pts	
  /	
  512)	
  +	
  1	
  :	
  pts	
  /	
  512;	
  

	
  	
  pds	
  +=	
  1;	
  /*	
  in	
  case	
  it	
  crosses	
  a	
  pd	
  boundary	
  virtually	
  */	
  

	
  

	
  	
  pdpts	
  =	
  pds	
  %	
  512	
  ?	
  (pds	
  /	
  512)	
  +	
  1	
  :	
  pds	
  /	
  512;	
  

	
  	
  pdpts	
  +=	
  1;	
  /*	
  in	
  case	
  it	
  crosses	
  a	
  pdpt	
  boundary	
  virtually	
  */	
  

	
  	
  

	
  	
  framearray_pages	
  +=	
  pts	
  +	
  pds	
  +	
  pdpts;	
  	
  

	
  

/**	
  first,	
  find	
  a	
  block	
  of	
  physical	
  memory	
  suitable	
  for	
  storing	
  the	
  frame	
  array.	
  the	
  first	
  block	
  is	
  not	
  

suitable	
  bc	
  we've	
  used	
  stuff	
  	
  	
  	
  	
  	
  	
  there	
  already.	
  **/	
  

	
  	
  block	
  +=	
  1;	
  

	
  

	
  	
  for(i	
  =	
  1;	
  i	
  <	
  *numblocks;	
  i++,	
  block++	
  )	
  {	
  

	
  

	
  	
  	
  	
  if(block-­‐>length	
  ==	
  0)	
  

	
  	
  	
  	
  	
  	
  continue;	
  

	
  

	
  	
  	
  	
  /*	
  if	
  the	
  block	
  is	
  useable	
  &	
  big	
  enough*/	
  

	
  	
  	
  	
  if	
  (	
  (block-­‐>type	
  !=	
  1)	
  ||	
  	
  (block-­‐>length	
  <=	
  (framearray_pages	
  *	
  PAGE_SIZE))	
  )	
  	
  

	
  	
  	
  	
  	
  	
  continue;	
  

	
  

	
  	
  	
  	
  frame_position	
  =	
  block-­‐>base;	
  

	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  /**	
  find	
  out	
  where	
  in	
  the	
  tables	
  we	
  will	
  store	
  the	
  array	
  based	
  on	
  the	
  fixed	
  virtual	
  address	
  given	
  

**/	
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  pml4t_idx	
  =	
  virt2pml4t(frame_array_vaddr);	
  

	
  	
  	
  	
  pdpt_idx	
  =	
  virt2pdpt(frame_array_vaddr);	
  

	
  	
  	
  	
  pd_idx	
  =	
  virt2pd(frame_array_vaddr);	
  

	
  	
  	
  	
  pt_idx	
  =	
  virt2pt(frame_array_vaddr);	
  

	
  

	
  	
  	
  	
  /**	
  NOTE:	
  For	
  setup	
  tables	
   in	
  this	
   function,	
  we	
  are	
  marking	
  them	
  as	
  executable	
  because	
  this	
  

table	
  might	
  be	
  used	
  for	
  some	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  executable	
  stuff	
  later	
  on	
  (we	
  don’t	
  know)	
  and	
  we	
  don’t	
  trust	
  later	
  allocators	
  to	
  check	
  this	
  

top	
  level	
  permissions.	
  marking	
  the	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  page	
  as	
  no-­‐execute	
  is	
  sufficient	
  to	
  ensure	
  that	
  the	
  frame	
  array	
  is	
  not	
  executable	
  **/	
  

	
  	
  	
  	
  	
  

	
  	
  	
  	
  /*	
  initialize	
  the	
  virtual	
  address	
  */	
  

	
  	
  	
  	
  pml4t	
  =	
  (struct	
  page_map_level_4_table	
  *)read_cr3();	
  

	
  	
  	
  	
  if(!(pml4t-­‐>entries[pml4t_idx]).present){	
  

	
  	
  	
  	
  	
  	
  setup_table(	
  (void	
  *)frame_position,	
  PML4TE2vaddr(pml4t_idx),	
  1/*	
  executable	
  */);	
  

	
  	
  	
  	
  	
  	
  /**then	
  memset	
  the	
  frame	
  for	
  the	
  pdpt	
  ITSELF	
  to	
  zero	
  */	
  

	
  	
  	
  	
  	
  	
  kmemset(PDPTE2vaddr(pml4t_idx,0),	
  0,	
  PAGE_SIZE);	
  

	
  	
  	
  	
  	
  	
  frame_position	
  +=	
  PAGE_SIZE;	
  	
  	
  

	
  	
  	
  	
  }	
  

	
  

	
  	
  	
  	
  pdpt	
  =	
  (struct	
  page_directory_pointer_table	
  *)PDPTE2vaddr(pml4t_idx,0);	
  

	
  	
  	
  	
  if(!(pdpt-­‐>entries[pdpt_idx]).present){	
  

	
  	
  	
  	
  	
  	
  setup_table(	
  (void	
  *)frame_position,	
  PDPTE2vaddr(pml4t_idx,pdpt_idx),	
  1	
  /*	
  executable	
  */);	
  	
  

	
  	
  	
  	
  	
  	
  kmemset(PDE2vaddr(pml4t_idx,pdpt_idx,0),	
  0,	
  PAGE_SIZE);	
  

	
  	
  	
  	
  	
  	
  frame_position	
  +=	
  PAGE_SIZE;	
  

	
  	
  	
  	
  }	
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  pd	
  =	
  (struct	
  page_directory	
  *)PDE2vaddr(pml4t_idx,pdpt_idx,0);	
  

	
  	
  	
  	
  if(!(pd-­‐>entries[pd_idx]).present){	
  

	
  	
  	
  	
  	
  	
  setup_table((void	
   *)frame_position,	
   PDE2vaddr(pml4t_idx,pdpt_idx,pd_idx),	
   1	
   /*	
   executable	
  

*/);	
  

	
  	
  	
  	
  	
  	
  kmemset(PTE2vaddr(pml4t_idx,pdpt_idx,pd_idx,0),	
  0,	
  PAGE_SIZE);	
  

	
  	
  	
  	
  	
  	
  frame_position	
  +=	
  PAGE_SIZE;	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  }	
  

	
  

	
  	
  	
  	
  /**	
  this	
  loop	
  maps	
  in	
  the	
  frames	
  to	
  store	
  enough	
  pages	
  to	
  contain	
  the	
  frame	
  array	
  **/	
  

	
  	
  	
  	
  for	
  (	
  i	
  =	
  0;	
  i	
  <	
  framearray_pages;	
  i++	
  )	
  {	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  	
  	
  if(pt_idx	
  ==	
  512)	
  {	
  

	
  	
  	
  	
  	
  	
  	
  	
  pt_idx	
  =	
  0;	
  

	
  	
  	
  	
  	
  	
  	
  	
  pd_idx++;	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  if(pd_idx	
  ==	
  512)	
  {	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  pd_idx	
  =	
  0;	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  pdpt_idx++;	
  

	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if(pdpt_idx	
  ==	
  512)	
  {	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  pdpt_idx	
  =	
  0;	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  pml4t_idx++;	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if(pml4t_idx	
  ==	
  511)	
  {	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  printf("Not	
  enough	
  virtual	
  memory	
  to	
  cover	
  the	
  largest	
  block!");	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  panic();	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }	
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  /**add	
  a	
  new	
  pdpt	
  to	
  the	
  pml4t	
  **/	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  setup_table(	
  (void	
  *)frame_position,	
  PML4TE2vaddr(pml4t_idx),	
  PG_RW);	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  /**then	
  memset	
  the	
  frame	
  for	
  the	
  pdpt	
  ITSELF	
  to	
  zero	
  */	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  kmemset(PDPTE2vaddr(pml4t_idx,0),	
  0,	
  PAGE_SIZE);	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  frame_position	
  +=	
  PAGE_SIZE;	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }//pdpt's	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  /**	
  add	
  a	
  new	
  pdt	
  to	
  the	
  pdpt	
  */	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  setup_table(	
  (void	
  *)frame_position,	
  PDPTE2vaddr(pml4t_idx,pdpt_idx),	
  PG_RW);	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  kmemset(PDE2vaddr(pml4t_idx,pdpt_idx,0),	
  0,	
  PAGE_SIZE);	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  frame_position	
  +=	
  PAGE_SIZE;	
  

	
  	
  	
  	
  	
  	
  	
  	
  }//pd's	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  /**	
  add	
  a	
  new	
  pt	
  to	
  the	
  pdt	
  */	
  

	
  	
  	
  	
  	
  	
  	
  	
  setup_table((void	
  *)frame_position,	
  PDE2vaddr(pml4t_idx,pdpt_idx,pd_idx),	
  PG_RW);	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  kmemset(PTE2vaddr(pml4t_idx,pdpt_idx,pd_idx,0),	
  0,	
  PAGE_SIZE);	
  

	
  	
  	
  	
  	
  	
  	
  	
  frame_position	
  +=	
  PAGE_SIZE;	
  

	
  	
  	
  	
  	
  	
  }//pt's	
  	
  

	
  

	
  	
  	
  	
  	
  	
  /**	
  finally	
  attach	
  the	
  frames	
  to	
  actual	
  pt's	
  */	
  

	
  	
  	
  	
  	
  	
  setup_table((void	
  *)frame_position,	
  PTE2vaddr(pml4t_idx,pdpt_idx,pd_idx,	
  pt_idx),	
  PG_RW	
  |	
  

PG_NX	
  |	
  PG_GLOBAL	
  );	
  

	
  	
  	
  	
  	
  	
  frame_position	
  +=	
  PAGE_SIZE;	
  

	
  	
  	
  	
  	
  	
  pt_idx++;	
  

	
  	
  	
  	
  }//for	
  loop	
  on	
  framearray_pages	
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  /*	
  we	
  found	
  our	
  good	
  block	
  and	
  finished	
  initialization:	
  break!	
  */	
  

	
  	
  	
  	
  break;	
  	
  	
  

	
  

	
  	
  }	
  //	
  blocks	
  for	
  loop	
  

	
  

	
  	
  /**	
  now	
  actually	
  populate	
  the	
  array	
  **/	
  

	
  	
  framearray	
  =	
  (struct	
  frame_array_entry_t*)frame_array_vaddr;	
  

	
  

	
  	
  framearray_idx	
  =	
  0;	
  

	
  	
  block	
  =	
  (struct	
  memmap	
  *)0x804;	
  

	
  	
  for(	
  i	
  =	
  0;	
  i	
  <	
  *numblocks;	
  i++	
  )	
  {	
  

	
  

	
  	
  	
  	
  for	
  (	
  j	
  =	
  0	
  ;	
  j	
  <	
  block-­‐>length/PAGE_SIZE;	
  j++	
  )	
  {	
  

	
  	
  	
  	
  	
  	
  if	
  (	
  block-­‐>type	
  ==	
  0x1	
  )	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  framearray[framearray_idx].free	
  =	
  0x1;	
  

	
  	
  	
  	
  	
  	
  else	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  framearray[framearray_idx].free	
  =	
  0x0;	
  

	
  

	
  	
  	
  	
  	
  	
  framearray[framearray_idx++].type	
  =	
  block-­‐>type;	
  

	
  	
  	
  	
  }	
  

	
  

	
  	
  	
  	
  /**	
  increment	
  to	
  next	
  block	
  */	
  

	
  	
  	
  	
  oldblock	
  =	
  block++;	
  

	
  	
  	
  	
  	
  

	
  	
  	
  	
  /**	
  check	
  to	
  see	
  if	
  there	
  is	
  a	
  hole	
  */	
  

	
  	
  	
  	
  if	
  (	
  (oldblock-­‐>length	
  +	
  oldblock-­‐>base)	
  ==	
  block-­‐>base	
  )	
  

	
  	
  	
  	
  	
  	
  continue;	
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  if	
  (	
  i	
  ==	
  (*numblocks	
  -­‐	
  1)	
  )	
  /**	
  if	
  this	
  is	
  the	
  last	
  block	
  */	
  

	
  	
  	
  	
  	
  	
  break;	
  	
  

	
  	
  	
  	
  	
  

	
  	
  	
  	
  /**	
  there	
  is	
  a	
  hole...	
  */	
  

	
  	
  	
  	
  hole_length	
  =	
  (block-­‐>base-­‐(oldblock-­‐>length	
  +	
  oldblock-­‐>base))/PAGE_SIZE;	
  

	
  	
  	
  	
  for	
  (	
  j	
  =	
  0;	
  j	
  <	
  hole_length;	
  j++	
  )	
  {	
  

	
  

	
  	
  	
  	
  	
  	
  framearray[framearray_idx].free	
  =	
  0x0;	
  /*	
  no	
  hole	
  is	
  free	
  (TWSS)	
  */	
  

	
  	
  	
  	
  	
  	
  framearray[framearray_idx++].type	
  =	
  0x06;	
  	
  

	
  	
  	
  	
  }	
  

	
  	
  }	
  /*	
  end	
  the	
  loop	
  iterating	
  over	
  blocks	
  to	
  populate	
  framearray	
  */	
  

	
  

	
  	
  /**	
  Now	
  we	
  want	
  to	
  actually	
  fill	
   the	
  frame	
  array	
  entries	
  with	
  the	
  vaddr	
  that	
   is	
  mapped	
  to	
  the	
  

frame,	
  so	
  we'll	
  walk	
  the	
  page	
  tables	
  to	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  find	
  currently	
  present	
  mappings	
  **/	
  

	
  	
  pml4t	
  =	
  (struct	
  page_map_level_4_table*)0x1000;	
  

	
  	
  for	
  (	
  pml4t_idx	
  =	
  0;	
  pml4t_idx	
  <	
  512;	
  pml4t_idx++	
  )	
  {	
  

	
  

	
  	
  	
  	
  if	
  (	
  !pml4t-­‐>entries[pml4t_idx].present	
  )	
  

	
  	
  	
  	
  	
  	
  continue;	
  

	
  

	
  	
  	
  	
  for	
  (	
  pdpt_idx	
  =	
  0;	
  pdpt_idx	
  <	
  512;	
  pdpt_idx++	
  )	
  {	
  

	
  

	
  	
  	
  	
  	
  	
  pdpt	
  =	
  (struct	
  page_directory_pointer_table*)PDPTE2vaddr(pml4t_idx,0);	
  

	
  	
  	
  	
  	
  	
  if	
  (	
  !pdpt-­‐>entries[pdpt_idx].present	
  )	
  

	
  	
  	
  	
  	
  	
  	
  	
  continue;	
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  for	
  (	
  pd_idx	
  =	
  0;	
  pd_idx	
  <	
  512;	
  pd_idx++	
  )	
  {	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  pd	
  =	
  (struct	
  page_directory*)PDE2vaddr(pml4t_idx,pdpt_idx,0);	
  

	
  	
  	
  	
  	
  	
  	
  	
  if	
  (	
  !pd-­‐>entries[pd_idx].present	
  )	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  continue;	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  for	
  (	
  pt_idx	
  =	
  0;	
  pt_idx	
  <	
  512;	
  pt_idx++	
  )	
  {	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  pt	
  =	
  (struct	
  page_table*)PTE2vaddr(pml4t_idx,	
  pdpt_idx,	
  pd_idx,	
  0);	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  (	
  pt-­‐>entries[pt_idx].present	
  )	
  {	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  page	
  =	
  (union	
  page	
  *)PTE2vaddr(pml4t_idx,pdpt_idx,pd_idx,	
  pt_idx);	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  /*	
  store	
  virtual	
  address	
  and	
  mark	
  as	
  taken	
  */	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  framearray[TABLE2ADDR(page-­‐>addr)/PAGE_SIZE].vaddr	
   =	
  

idx2vaddr(pml4t_idx,pdpt_idx,pd_idx,pt_idx);	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  framearray[TABLE2ADDR(page-­‐>addr)/PAGE_SIZE].free	
  =	
  0x0;	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  }	
  /*	
  end	
  pt	
  level	
  loop	
  */	
  

	
  	
  	
  	
  	
  	
  }	
  /*	
  end	
  pd	
  level	
  loop	
  */	
  

	
  	
  	
  	
  }	
  /*	
  end	
  pdpt	
  level	
  loop	
  */	
  	
  

	
  	
  }	
  /*	
  end	
  pml4t	
  level	
  loop	
  */	
  

	
  

	
  	
  return;	
  

}	
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APPENDIX E – ACPI Structures and APIC Handling Code 
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void	
  ACPI_Parse_MADT(struct	
  ACPIMADT	
  *madt)	
  

{	
  

	
  	
  uint8_t	
  *entry,	
  *end_dt;	
  

	
  	
  struct	
  APICHeader	
  *header;	
  

	
  	
  struct	
  APICIOAPICEntry	
  *ioapic;	
  

	
  	
  struct	
  APICLocalAPICEntry	
  *apic;	
  

	
  	
  struct	
  APICInterruptOverrideEntry	
  *interruptoverride;	
  

	
  

	
  	
  entry	
  =	
  (uint8_t	
  *)madt	
  +	
  sizeof(struct	
  ACPIMADT);	
  

	
  	
  end_dt	
  =	
  (uint8_t	
  *)madt+madt-­‐>Length;	
  

	
  

	
  	
  while(entry	
  <	
  end_dt){	
  

	
  	
  	
  	
  header	
  =	
  (struct	
  APICHeader	
  *)entry;	
  

	
  

	
  	
  	
  	
  if((header-­‐>DeviceType	
  ==	
  0)	
  &&	
  (apic-­‐>flags	
  &	
  0x1)	
  ==	
  1){	
  

	
  	
  	
  	
  	
  	
  apic	
  =	
  (struct	
  APICLocalAPICEntry*)header;	
  

	
  	
  	
  	
  	
  	
  /*	
  Found	
  an	
  APIC	
  entry	
  */	
  

	
  	
  	
  	
  }	
  

	
  	
  	
  	
  else	
  if(header-­‐>DeviceType	
  ==	
  1){	
  

	
  	
  	
  	
  	
  	
  ioapic	
  =	
  (struct	
  APICIOAPICEntry*)header;	
  

	
  	
  	
  	
  	
  	
  /*	
  Found	
  an	
  I/O	
  APIC	
  entry	
  */	
  

	
  	
  	
  	
  }	
  

	
  	
  	
  	
  else	
  if(header-­‐>DeviceType	
  ==	
  	
  2){	
  

	
  	
  	
  	
  	
  	
  interruptoverride	
  =	
  (struct	
  APICInterruptOverrideEntry*)header;	
  

	
  	
  	
  	
  	
  	
  /*	
  Found	
  an	
  Interrupt	
  Override	
  entry	
  */	
  

	
  	
  	
  	
  }	
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  entry+=header-­‐>Length;	
  	
  /*	
  move	
  to	
  next	
  entry	
  */	
  

	
  	
  }	
  

	
  	
  return;	
  

}	
  

	
  

void	
  ACPI_Parse_Entry(struct	
  ACPIHeader	
  *header)	
  

{	
  

	
  	
  const	
  char	
  *apic	
  =	
  "APIC";	
  

	
  	
  const	
  char	
  *dmar	
  =	
  "DMAR";	
  

	
  	
  const	
  char	
  *hpet	
  =	
  "HPET";	
  

	
  	
  const	
  char	
  *mcfg	
  =	
  "MCFG";	
  

	
  

	
  	
  if(strncmp(header-­‐>Signature,apic,strlen(apic))==0)	
  

	
  	
  	
  	
  	
  	
  ACPI_Parse_MADT((struct	
  ACPIMADT	
  *)header);	
  

	
  	
  else	
  if(strncmp(header-­‐>Signature,dmar,strlen(dmar))==0)	
  

	
  	
  	
  	
  	
  	
  ACPI_Parse_DMAR((struct	
  ACPIDMAR	
  *)header);	
  

	
  	
  else	
  if(strncmp(header-­‐>Signature,hpet,strlen(hpet))==0)	
  

	
  	
  	
  	
  	
  	
  ACPI_Parse_HPET((struct	
  ACPIHeader	
  *)header);	
  

	
  

	
  	
  return;	
  

}	
  

	
  

void	
  Scan_ACPI(struct	
  RSDPDescriptor20	
  rsdpdesc)	
  

{	
  

	
  	
  struct	
  ACPIHeader	
  *rsdt;	
  

	
  	
  uint32_t	
  *entry_ptr,	
  *end_rsdt;	
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  uint32_t	
  address,	
  address_end;	
  

	
  

	
  	
  /*	
  identity	
  page	
  the	
  address	
  given	
  by	
  the	
  RSDT,	
  remember	
  page	
  alignment	
  */	
  

	
  	
  attach_page(rsdpdesc.RsdtAddress	
  &	
  0xFFFFFFF000,rsdpdesc.RsdtAddress	
  &	
  0xFFFFFFF000);	
  

	
  

	
  	
  rsdt	
  =	
  (struct	
  ACPIHeader	
  *)(uintptr_t)(rsdpdesc.RsdtAddress);	
  

	
  

	
  	
  entry_ptr	
  =	
  (uint32_t*)(rsdt+1);	
  

	
  	
  end_rsdt	
  =	
  (uint32_t*)(((uint8_t*)rsdt)+rsdt-­‐>Length);	
  

	
  	
  address	
  =	
  *entry_ptr;	
  /*Start	
  of	
  ACPI	
  tables*/	
  

	
  

	
  	
  address_end	
   =	
   *(end_rsdt-­‐1)+0x2000;	
   /*	
   The	
   BIOS	
   has	
   a	
   nasty	
   habit	
   of	
   putting	
   the	
   end	
   off	
   a	
  

page	
  boundary	
  */	
  

	
  

	
  	
  /*	
  	
  	
  	
  First	
  loop	
  we	
  iterate	
  by	
  page	
  size	
  over	
  the	
  entire	
  ACPI	
  table	
  */	
  

	
  	
  while(address	
  <	
  address_end){	
  

	
  	
  	
  	
  	
  	
  /*Remember	
  things	
  need	
  to	
  be	
  page	
  aligned	
  to	
  work	
  correctly*/	
  

	
  	
  	
  	
  	
  	
  /*The	
  BIOS	
  writers	
  won't	
  do	
  it	
  for	
  you*/	
  

	
  	
  	
  	
  	
  	
  attach_page(address	
  &	
  0xFFFFFFF000,address	
  &	
  0xFFFFFFF000);	
  

	
  	
  	
  	
  	
  	
  address+=0x1000;	
  

	
  	
  	
  	
  }	
  

	
  

	
  	
  /*	
  Second	
  loop	
  we	
  parse	
  the	
  now	
  mapped	
  in	
  ACPI	
  table	
  */	
  

	
  	
  while(entry_ptr	
  <	
  end_rsdt)	
  

	
  	
  	
  	
  {	
  

	
  	
  	
  	
  	
  	
  address	
  =	
  *entry_ptr;	
  

	
  	
  	
  	
  	
  	
  ACPI_Parse_Entry((struct	
  ACPIHeader	
  *)(uintptr_t)address);	
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  entry_ptr++;	
  

	
  	
  	
  	
  }	
  

	
  

	
  	
  	
  	
  return;	
  

}	
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APPENDIX F – Fields and Values for APIC MMIO 
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Appendix G – Time Stamp Counter (TSC) Handling Code 

inline	
  uint64_t	
  readtscp()	
  {	
  

	
  	
  uint32_t	
  lo,	
  hi;	
  

	
  	
  asm	
  volatile("rdtscp"	
  :	
  "=a"(lo),	
  "=d"(hi)	
  ::	
  "rcx"	
  );	
  

	
  	
  asm	
  volatile("cpuid");	
  

	
  	
  return	
  (uint64_t)(lo)	
  |	
  ((uint64_t)(hi)	
  <<	
  32);	
  

}	
  

	
  

inline	
  uint64_t	
  readtsc()	
  {	
  

	
  	
  uint32_t	
  lo,	
  hi;	
  

	
  	
  asm	
  volatile("cpuid");	
  

	
  	
  asm	
  volatile("rdtsc"	
  :	
  "=a"(lo),	
  "=d"(hi)	
  ::	
  "rcx"	
  );	
  

	
  	
  return	
  (uint64_t)(lo)	
  |	
  ((uint64_t)(hi)	
  <<	
  32);	
  

}	
  

	
  

uint64_t	
  get_tsc_freq(){	
  

	
  

	
  	
  uint64_t	
  perf_stat_msr,	
  platform_msr,	
  flex_msr;	
  

	
  	
  uint64_t	
  ratio,	
  flex_ratio_max,	
  flex_ratio_min,	
  flex_ratio_cur;	
  

	
  	
  uint64_t	
  tsc_freq;	
  

	
  

	
  	
  perf_stat_msr	
  =	
  read_msr(0x198);	
  

	
  	
  platform_msr	
  	
  =	
  read_msr(0xCE);	
  

	
  	
  flex_msr	
  	
  	
  	
  	
  	
  =	
  read_msr(0x194);	
  

	
  

	
  	
  /*per	
  the	
  Intel	
  manuals	
  and	
  various	
  online	
  sites.	
  Bit	
  31	
  of	
  the	
  performance	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  



 

	
   188	
  

	
  	
  	
  *stats	
  register	
  indicates	
  xe	
  is	
  running	
  if	
  so	
  read	
  the	
  ratio	
  from	
  the	
  perf	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  *stat	
  msr	
  if	
  it's	
  not	
  running	
  the	
  value	
  is	
  in	
  the	
  platform	
  msr	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  */	
  

	
  	
  if(((perf_stat_msr	
  >>	
  31)	
  &	
  1)){	
  

	
  	
  	
  	
  ratio	
  =	
  ((perf_stat_msr	
  &	
  0x1F0000000000)	
  >>	
  40);	
  

	
  	
  }	
  

	
  	
  else{	
  

	
  	
  	
  	
  ratio	
  =	
  ((	
  platform_msr	
  	
  &	
  0xFF00)	
  >>	
  8);	
  

	
  	
  }	
  

	
  

	
  	
  /*the	
  platform	
  also	
  has	
  the	
  min	
  and	
  max	
  ratios	
  */	
  

	
  	
  flex_ratio_min	
  =	
  ((platform_msr	
  &	
  0x3F0000000000)	
  >>	
  40);	
  

	
  	
  flex_ratio_max	
  =	
  ((platform_msr	
  &	
  0xFF00)	
  >>	
  8);	
  

	
  	
  /*the	
  flex	
  msr	
  is	
  theory	
  has	
  the	
  current	
  ratio	
  */	
  

	
  	
  flex_ratio_cur	
  =	
  ((flex_msr	
  &	
  0xFF00)	
  >>	
  8);	
  

	
  

	
  	
  /*bit	
  16	
  of	
  the	
  flex	
  msr	
  tells	
  us	
  the	
  ratio's	
  can	
  vary!!	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  *however	
  if	
  the	
  lower	
  bits	
  are	
  zero	
  we	
  default	
  to	
  the	
  max	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  *the	
  frequency	
  multiplier	
  is	
  100	
  unless	
  the	
  bios	
  is	
  overclocked	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  */	
  

	
  	
  if((	
  flex_msr	
  >>	
  16)	
  &	
  1){	
  

	
  	
  	
  	
  if(flex_ratio_cur	
  ==	
  0){	
  

	
  	
  	
  	
  	
  	
  tsc_freq	
  =	
  flex_ratio_max	
  *	
  100	
  *	
  1000	
  *	
  1000;	
  

	
  	
  	
  	
  }	
  

	
  	
  	
  	
  else{	
  

	
  	
  	
  	
  	
  	
  tsc_freq	
  =	
  flex_ratio_cur	
  *	
  100	
  *	
  1000	
  *	
  1000;	
  

	
  	
  	
  	
  }	
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  }	
  

	
  	
  /*if	
  they’re	
  not	
  flexing	
  then	
  just	
  use	
  the	
  correct	
  ratio	
  from	
  above*/	
  

	
  	
  else{	
  

	
  	
  	
  	
  tsc_freq	
  =	
  ratio	
  *	
  1000	
  *	
  1000	
  *	
  100;	
  

	
  	
  }	
  

	
  

	
  	
  return	
  tsc_freq;	
  

}	
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Appendix H – VMEXIT APIC Access Handling Code 

static	
  void	
  apic_access_handler(	
  vproc_t	
  *vp	
  ){	
  

	
  	
  uint64_t	
  qualification,	
  ins_len,	
  vp_RIP;	
  

	
  

	
  	
  /*	
  Take	
  care	
  of	
  the	
  fact	
  that	
  we	
  need	
  move	
  past	
  the	
  instruction	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  	
  caused	
  a	
  vmexit	
  in	
  the	
  first	
  place.	
  In	
  this	
  case	
  it	
  is	
  the	
  size	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  	
  an	
  apic	
  access	
  */	
  

	
  	
  vmread(VM_EXIT_INSTRUCTION_LEN,	
  &ins_len);	
  

	
  	
  vmread(GUEST_RIP,	
  &vp_RIP);	
  

	
  	
  vmwrite(GUEST_RIP,	
  vp_RIP	
  +	
  ins_len);	
  

	
  

	
  	
  /*Table	
  27-­‐6	
  in	
  the	
  vmexit	
  section	
  chapter	
  27	
  of	
  the	
  intel	
  manual	
  describes*/	
  

	
  	
  /*The	
  qualification	
  field	
  is	
  where	
  this	
  information	
  is	
  populated	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  */	
  

	
  	
  /*the	
  access	
  type	
  that	
  caused	
  a	
  vmexit.	
  0x0000	
  =	
  read,	
  0x1000	
  =	
  write,	
  	
  	
  	
  	
  */	
  

	
  	
  /*others	
  are	
  not	
  currently	
  handled	
  	
  	
  	
  	
  	
  	
  	
  ^	
  (read	
  bit)	
  	
  	
  ^	
  (write	
  bit)	
  	
  	
  	
  	
  */	
  

	
  	
  vmread(EXIT_QUALIFICATION,	
  &qualification);	
  

	
  

	
  	
  /*	
  For	
  now	
  we	
  assume	
  the	
  guest	
  has	
  complete	
  control	
  of	
  the	
  core	
  it	
  is	
  	
  	
  	
  	
  	
  */	
  

	
  	
  /*	
  configuring.	
  Thus,	
  while	
  we	
  are	
  catching	
  what	
  the	
  guest	
  would	
  like	
  to	
  do*/	
  

	
  	
  /*	
  we	
  do	
  not	
  restrict	
  what	
  the	
  guest	
  is	
  doing.	
  Some	
  checks	
  should	
  be	
  added	
  */	
  

	
  	
  /*	
  to	
  prevent	
  potential	
  out	
  of	
  bounds	
  behaviour,	
  but	
  the	
  main	
  push	
  for	
  this*/	
  

	
  	
  /*	
  is	
  motivated	
  by	
  the	
  drive	
  to	
  give	
  the	
  guest	
  complete	
  control	
  of	
  the	
  core*/	
  

	
  	
  /*	
  it	
  is	
  using.	
  We	
  are	
  not	
  enabling	
  external	
  interrupt	
  exiting	
  and	
  we	
  are	
  	
  */	
  

	
  	
  /*	
  leaving	
  the	
  exception	
  bitmap	
  zeroed	
  out.	
  This	
  allows	
  the	
  guest	
  IDT	
  to	
  	
  	
  */	
  

	
  	
  /*	
  handle	
  all	
  of	
  the	
  interrupts	
  it	
  is	
  receiving.	
  This	
  is	
  also	
  a	
  performance*/	
  

	
  	
  /*	
  improvment	
  as	
  we	
  skip	
  coming	
  into	
  the	
  hypervisor	
  for	
  timer	
  interrupts.	
  	
  */	
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  /*	
  The	
  only	
  real	
  emulation	
  we	
  should	
  see	
  here	
  is	
  the	
  aknowledgment	
  of	
  EOI,	
  */	
  

	
  	
  /*	
  but	
  we	
  should	
  be	
  able	
  to	
  elimintate	
  that	
  with	
  incoming	
  intel	
  updates.	
  	
  	
  */	
  

	
  	
  if((qualification	
  &	
  0x1000)	
  ==	
  0x1000){	
  

	
  

	
  	
  	
  	
  if((qualification	
  &	
  0xfff)	
  ==	
  APIC_ICRL){	
  

	
  

	
  	
  	
  	
  	
  	
  /*	
  If	
  it	
  is	
  an	
  init	
  signal	
  start	
  the	
  count	
  for	
  joining	
  a	
  core*/	
  

	
  	
  	
  	
  	
  	
  if(	
  vp-­‐>reg_storage.rsi	
  ==	
  APIC_INIT){	
  

	
  	
  	
  	
  	
  	
  	
  	
  count_startup_ipis++;	
  

	
  	
  	
  	
  	
  	
  }/*	
  We	
  received	
  a	
  SIPI	
  count	
  the	
  first*/	
  

	
  	
  	
  	
  	
  	
  else	
  if(	
  (vp-­‐>reg_storage.rsi	
  &	
  0xf00)	
  ==	
  APIC_STARTUP){	
  

	
  	
  	
  	
  	
  	
  	
  	
  count_startup_ipis++;	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  /*Second	
  SIPI	
  received	
  time	
  to	
  join	
  a	
  core	
  to	
  the	
  guest	
  */	
  

	
  	
  	
  	
  	
  	
  	
  	
  if(count_startup_ipis	
  ==	
  3){	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  count_startup_ipis	
  =	
  0;	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  /*IPI's	
  don't	
  have	
  a	
  lot	
  of	
  room	
  for	
  data.	
  So,	
  we	
  use	
  a	
  global	
  	
  */	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  /*vproc	
  pointer	
  to	
  keep	
  track	
  of	
  who	
  we	
  are	
  joining	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  */	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  SIPI_vp	
  =	
  vp;	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  /*send	
  the	
  ipi	
  to	
  the	
  guest	
  the	
  core	
  wants	
  to	
  start	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  */	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  /*This	
  is	
  neat	
  as	
  we	
  can	
  read	
  the	
  previous	
  ICRH	
  write	
  to	
  find	
  */	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  /*out	
  who	
  we	
  are	
  trying	
  to	
  message	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  */	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  send_ipi((lapic_read(APIC_ICRH)	
  >>	
  24),	
  HYPV_PSEUDO_SIPI);	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  /*wait	
  for	
  the	
  core	
  we	
  are	
  starting	
  to	
  acknowledge	
  the	
  IPI	
  	
  	
  	
  	
  	
  */	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  while(lapic_read(APIC_ICRL)	
  &	
  APIC_DELIVS);	
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  }	
  

	
  	
  	
  	
  	
  	
  }	
  

	
  	
  	
  	
  }	
  

	
  	
  	
  	
  else{/*write	
  everything	
  else	
  to	
  the	
  APIC*/	
  

	
  	
  	
  	
  	
  	
  lapic_write((qualification	
  &	
  0xfff),	
  vp-­‐>reg_storage.rsi);	
  

	
  	
  	
  	
  }	
  

	
  	
  }	
  	
  /*else	
  if	
  reads	
  are	
  harmless*/	
  

	
  	
  else	
  if((qualification	
  &	
  0x1000)	
  ==	
  0x0000){	
  

	
  	
  	
  	
  vp-­‐>reg_storage.rax	
  =	
  lapic_read((qualification	
  &	
  0xfff));	
  

	
  	
  }	
  

	
  	
  else{/*	
  else	
  disaster	
  strikes	
  */	
  

	
  	
  	
  	
  printf("[HYPV	
  APIC]	
  unknown	
  APIC	
  access	
  caught\n");	
  

	
  	
  	
  	
  panic();	
  

	
  	
  }	
  

	
  	
  restore_gpregs(vp);	
  

	
  	
  launch_vproc(vp);	
  

	
  

	
  	
  return;	
  

}	
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Appendix I – Utility Virtual Machine Queue Code  

static	
  void	
  *util_msgq;	
  /*	
  the	
  utility	
  vm	
  message	
  queue	
  */	
  

	
  

/*	
  initialized	
  the	
  utility	
  vm	
  message	
  queue	
  */	
  

void	
  init_util_msg_queue(void){	
  

	
  	
  util_msgq	
  =	
  qopen();	
  

	
  	
  return;	
  

}	
  

	
  

/*	
  This	
  just	
  adds	
  a	
  utility	
  vm	
  core	
  	
  message	
  to	
  the	
  utility	
  message	
  queue	
  */	
  

void	
  add_util_msg(Util_msg_t*	
  msg){	
  

	
  	
  qput(util_msgq,	
  msg);	
  

	
  	
  return;	
  

}	
  

	
  

	
  

/*	
  The	
  helper	
  function	
  for	
  now	
  will	
  only	
  be	
  called	
  when	
  another	
  core	
  sends	
  	
  */	
  

/*	
  an	
  interrupt	
  to	
  a	
  core	
  that	
  lets	
  the	
  other	
  core	
  know	
  it	
  has	
  a	
  message	
  in	
  	
  */	
  

/*	
  the	
  hypervisor.	
  Thus,	
  if	
  the	
  util_message	
  queue	
  or	
  core	
  number	
  are	
  NULL	
  	
  */	
  

/*	
  a	
  catastrophic	
  error	
  has	
  occurred.	
  This	
  function	
  just	
  pulls	
  the	
  first	
  	
  	
  	
  */	
  

/*	
  found	
  message	
  belonging	
  to	
  a	
  specific	
  core	
  from	
  the	
  util	
  message	
  queue.	
  	
  */	
  

static	
  int	
  core_msg_cmp(void*	
  msg,	
  const	
  void*	
  core_number){	
  

	
  

	
  	
  if	
  (msg	
  ==	
  NULL){	
  

	
  	
  	
  	
  kprintf("NULL	
  util_msg_t	
  given	
  to	
  core_msgcmp\n");	
  

	
  	
  	
  	
  panic();	
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  }	
  

	
  

	
  	
  if	
  (core_number	
  ==	
  NULL){	
  

	
  	
  	
  	
  kprintf("NULL	
  core_number	
  given	
  to	
  core_msgcmp\n");	
  

	
  	
  	
  	
  panic();	
  

	
  	
  }	
  

	
  

	
  	
  return	
  (	
  (((Util_msg_t*)msg)-­‐>core_dst)	
  ==	
  (*(uint32_t*)core_number)	
  );	
  

}	
  

	
  

/*	
  a	
  core	
  in	
  the	
  hypervisor	
  will	
  call	
  this	
  function	
  to	
  retrieve	
  a	
  message	
  	
  	
  */	
  

/*	
  from	
  the	
  utility	
  message	
  queue.	
  It	
  will	
  only	
  return	
  messages	
  that	
  belong	
  */	
  

/*	
  to	
  that	
  specific	
  core,	
  because	
  this_cpu	
  returns	
  core	
  specific	
  APIC	
  ID	
  	
  	
  	
  */	
  

Util_msg_t*	
  remove_util_msg(void){	
  

	
  	
  uint32_t	
  core_id	
  =	
  this_cpu();	
  

	
  	
  Util_msg_t*	
  ret;	
  

	
  

	
  	
  ret	
  =	
  (Util_msg_t*)qremove(util_msgq,	
  &core_msg_cmp,	
  &core_id);	
  

	
  	
  /*	
  Since	
  the	
  other	
  core	
  is	
  sending	
  an	
  ipi	
  to	
  the	
  core	
  that	
  will	
  call	
  this	
  	
  shouldn’t	
  happen*/	
  

if(ret	
  ==	
  NULL){	
  

	
  	
  	
  	
  kprintf("core	
  does	
  not	
  have	
  a	
  message	
  waiting	
  for	
  it	
  PANIC\n");	
  

	
  	
  	
  	
  panic();	
  

	
  	
  }	
  

	
  

return	
  ret;	
  

}	
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