
Securing Operating Systems Through Utility Virtual Machines

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

by

Robert Denz

Thayer School of Engineering

Dartmouth College

Hanover, New Hampshire

June 2017

Examining Committee:

Chairman_______________________
Stephen Taylor, Ph.D.

Member________________________

George Cybenko, Ph.D.

Member________________________
Eugene Santos, Jr. Ph.D.

Member________________________

Ryan Durante, Ph.D.

F. Jon Kull
Dean of Graduate Studies

	

	
 ii	

Abstract

The advent of hypervisors revolutionized the computing industry in terms of

malware prevention and detection, secure virtual machine managers, and cloud

resilience. However, this has resulted in a disjointed response to handling known

threats rather than preventing unknown zero-day threats. This thesis introduces a

new paradigm to cloud computing – utility virtual machines – that directly

leverages virtualization hardware for protection and eliminates often accepted

roles of the operating system kernel. This represents a break from prevailing

practices and serves to establish a hardware root of trust for system operation.

	
 iii	

Acknowledgments

I	
 would	
 like	
 to	
 thank	
 my	
 adviser	
 Dr.	
 Stephen	
 Taylor	
 for	
 his	
 valued	
 support	

while	
 in	
 graduate	
 school.	
 He	
 provided	
 me	
 with	
 the	
 opportunity	
 to	
 delve	
 deep	

into	
 the	
 fields	
 of	
 virtualization	
 and	
 symmetric	
 multiprocessing.	
 Giving	
 me	
 the	

time	
 and	
 resources	
 to	
 develop	
 a	
 far	
 deeper	
 understanding	
 of	
 computing	

systems	
 and	
 an	
 appreciation	
 for	
 the	
 academic	
 process.	

	

As	
 Rome	
 wasn’t	
 built	
 in	
 a	
 day	
 or	
 by	
 a	
 single	
 individual,	
 I	
 would	
 like	
 to	
 thank	

my	
 research	
 group	
 Scott	
 Brookes,	
 Martin	
 Osterloh,	
 Stephen	
 Kuhn,	
 Morgon	

Kanter,	
 Jason	
 Dahlstrom,	
 and	
 Colin	
 Nichols,	
 who	
 without	
 them,	
 much	
 of	
 the	

development	
 would	
 still	
 be	
 on	
 going.	
 Through	
 our	
 combined	
 efforts	
 we	
 have	

built	
 a	
 truly	
 modern	
 system,	
 which	
 has	
 provided	
 a	
 wealth	
 of	
 novel	
 research	

topics.	
 Those	
 outside	
 of	
 the	
 research	
 group,	
 Jacob	
 Russell,	
 who	
 as	
 a	

coworker,	
 friend,	
 and	
 roommate	
 has	
 always	
 provided	
 a	
 keen	
 perspective	
 on	

the	
 work	
 our	
 group	
 does	
 and	
 Karen	
 Thurston	
 who	
 has	
 been	
 invaluable	
 in	

helping	
 me	
 balance	
 the	
 logistical	
 details	
 of	
 a	
 Ph.D.	
 	
 	

	

Specifically,	
 I	
 would	
 like	
 to	
 thank	
 my	
 parents	
 Michael	
 and	
 Mary	
 Denz	
 who	

have	
 supported	
 me	
 throughout	
 academia,	
 career,	
 and	
 academia	
 again.	
 You	

have	
 been	
 role	
 models	
 throughout	
 my	
 life	
 and	
 always	
 provided	
 me	
 the	

wisdom	
 needed	
 to	
 make	
 the	
 right	
 choice.	
 Also	
 deserving	
 of	
 thanks	
 is	
 my	

sister,	
 Brittany	
 Denz,	
 an	
 integral	
 part	
 of	
 my	
 family	
 support	
 system.	
 	

	

	
 iv	

My	
 fiancée	
 Emily,	
 who	
 has	
 provided	
 all	
 means	
 of	
 support	
 to	
 me	
 over	
 the	

years,	
 from	
 home	
 cooked	
 meals,	
 to	
 fun	
 family	
 getaways,	
 as	
 well	
 as	
 allowing	

me	
 to	
 turn	
 our	
 dining	
 room	
 into	
 my	
 makeshift	
 office	
 to	
 finalize	
 the	
 remainder	

of	
 my	
 thesis.	
 You	
 have	
 gone	
 above	
 and	
 beyond	
 in	
 your	
 support	
 of	
 me	
 of	
 me	

on	
 this	
 journey.	

	

Lastly,	
 every	
 one	
 who	
 has	
 listened	
 to	
 me	
 spend	
 days	
 complaining	
 about	
 a	

random	
 bug	
 in	
 my	
 code.	
 	

	

This research is supported by the Defense Advanced Research Projects Agency as

part of the MRC program under contract FA8750-11-2-0257. The U.S.

Government is authorized to reproduce and distribute reprints for Governmental

purposes notwithstanding any copyright notation thereon. The views and

conclusions contained herein are those of the authors and should not be

interpreted as necessarily representing the official policies or endorsements, either

expressed or implied, of the Defense Advanced Research Projects Agency

(DARPA) or the U.S. Government.

	
 v	

Table of Contents

Abstract	
 ..	
 ii	

Acknowledgments	
 ...	
 iii	

Table	
 of	
 Contents	
 ...	
 v	

List	
 of	
 Tables:	
 ...	
 ix	

List	
 of	
 Figures:	
 ...	
 x	

List	
 of	
 Acronyms	
 ..	
 xiii	

Chapter	
 1	
 –	
 Introduction	
 ..	
 1	

1.	
 1	
 Background	
 &	
 Motivation	
 ..	
 2	

1.2	
 Approach	
 ...	
 8	

1.3	
 Performance	
 Metrics	
 ..	
 13	

1.4	
 Contributions	
 ...	
 14	

1.5	
 Thesis	
 Organization	
 ..	
 16	

Chapter	
 2	
 –	
 Related	
 Work	
 ...	
 18	

2.1	
 Threat	
 Model	
 ..	
 20	

2.2	
 Malware	
 Detection	
 and	
 Prevention	
 ...	
 22	

2.3	
 Secure	
 Virtual	
 Machine	
 Managers	
 ..	
 27	

2.4	
 Cloud	
 Resilience	
 ..	
 32	

2.5	
 Comparative	
 Analysis	
 ...	
 33	

2.6	
 Related	
 Fields	
 of	
 Work	
 ...	
 37	

2.7	
 Summary	
 ..	
 37	

Chapter	
 3	
 –	
 Symmetric	
 Multiprocessing	
 ..	
 39	

3.1	
 Introduction	
 ...	
 39	

3.1.1	
 Basic	
 Concepts	
 ..	
 43	

	
 vi	

3.1.2	
 Overview	
 ...	
 50	

3.2	
 Stage-­‐One	
 Bootloader	
 ..	
 53	

3.2.1	
 CPU	
 Configurations	
 ..	
 55	

3.2.2	
 Physical	
 Memory	
 Profiling	
 ..	
 57	

3.2.3	
 Initial	
 Page	
 Table	
 Creation	
 ..	
 59	

3.3	
 Stage-­‐Two	
 Bootloader	
 and	
 Memory	
 Manager	
 ...	
 63	

3.3.1	
 An	
 Array	
 of	
 Structures	
 ..	
 64	

3.3.2	
 Growing	
 the	
 Initial	
 Page	
 Tables	
 Through	
 Recursion	
 ...	
 66	

3.3.3	
 Mapping	
 and	
 Populating	
 the	
 Frame	
 Array	
 ...	
 70	

3.4	
 Hypervisor	
 ..	
 74	

3.4.1	
 Utilizing	
 the	
 Application	
 Processor	
 Cores	
 ..	
 75	

3.4.2	
 Finding	
 the	
 Application	
 Processor	
 Cores	
 ...	
 76	

3.4.2.1	
 Advanced	
 Configuration	
 Power	
 Interface	
 Table	
 ..	
 77	

3.4.3	
 SMP	
 configuration	
 for	
 the	
 Bootstrap	
 Processor	
 ..	
 81	

3.4.3.1	
 Enabling	
 the	
 APIC	
 ..	
 81	

3.4.3.2	
 Configuring	
 the	
 APIC	
 Timer	
 ..	
 83	

3.4.3.3	
 Configuring	
 the	
 I/O	
 APIC	
 ...	
 86	

3.4.4	
 Booting	
 the	
 Application	
 Cores	
 ...	
 90	

3.4.5	
 Hypervisor	
 Modifications	
 to	
 Support	
 APIC	
 Access	
 Virtualization	
 	
 94	

3.4.6	
 Enabling	
 APIC	
 Access	
 Virtualization	
 ...	
 97	

3.4.6.1	
 APIC	
 Access	
 Virtualization	
 Exit	
 Handling	
 ...	
 98	

3.4.6.2	
 Joining	
 Cores	
 to	
 a	
 Running	
 Guest	
 ...	
 100	

3.5	
 Micro-­‐Kernel	
 SMP	
 Scheduling	
 Considerations	
 ..	
 102	

3.5.1	
 Locking	
 and	
 Transitions	
 ...	
 103	

3.5.2	
 User	
 &	
 Idle	
 Process	
 Scheduling	
 ...	
 105	

	
 vii	

3.6	
 Benchmarks	
 and	
 Analysis	
 ..	
 106	

3.7	
 Summary	
 ..	
 109	

Chapter	
 4	
 –	
 Utility	
 Virtual	
 Machines	
 ...	
 110	

4.1	
 Building	
 the	
 first	
 UVM	
 ..	
 111	

4.2	
 Extending	
 Message	
 Passing	
 to	
 the	
 Hypervisor	
 ...	
 115	

4.3	
 Pairing	
 Two	
 UVMs	
 Together	
 ...	
 121	

4.4	
 Benchmarking	
 and	
 Analysis	
 ..	
 124	

4.5	
 Summary	
 ..	
 126	

Chapter	
 5	
 –	
 A	
 Further	
 Abstraction:	
 The	
 Network	
 UVM	
 ..	
 128	

5.1	
 Network	
 Utility	
 Virtual	
 Machine	
 Helper	
 Daemon	
 (NUVMHD)	
 	
 129	

5.2	
 Implementing	
 the	
 Network	
 UVM	
 ..	
 131	

5.3	
 Benchmarking	
 and	
 Analysis	
 ..	
 133	

5.4	
 Summary	
 ..	
 135	

Chapter	
 6	
 –	
 Heat	
 Diffusion	
 Scheduling	
 ...	
 136	

6.1	
 Implementing	
 diffusion	
 ...	
 140	

6.2	
 Benchmarks	
 and	
 Analysis	
 ..	
 146	

6.3	
 Summary	
 ..	
 150	

Chapter	
 7	
 –	
 Conclusions	
 and	
 Future	
 Work	
 ...	
 152	

7.1	
 Conclusions	
 ...	
 152	

7.2	
 Future	
 Work	
 ...	
 155	

Appendix	
 A	
 –	
 Stage	
 One	
 Bootloader	
 Code	
 ..	
 157	

Appendix	
 B	
 –	
 Register	
 Layouts	
 ..	
 169	

APPENDIX	
 C	
 –	
 Macros	
 for	
 paging	
 ...	
 170	

Appendix	
 D	
 –	
 Paging	
 Structures	
 &	
 Frame	
 Array	
 Initialization	
 C	
 Code	
 	
 171	

	
 viii	

APPENDIX	
 E	
 –	
 ACPI	
 Structures	
 and	
 APIC	
 Handling	
 Code	
 	
 181	

APPENDIX	
 F	
 –	
 Fields	
 and	
 Values	
 for	
 APIC	
 MMIO	
 ..	
 186	

Appendix	
 G	
 –	
 Time	
 Stamp	
 Counter	
 (TSC)	
 Handling	
 Code	
 	
 187	

Appendix	
 H	
 –	
 VMEXIT	
 APIC	
 Access	
 Handling	
 Code	
 ..	
 190	

Appendix	
 I	
 –	
 Utility	
 Virtual	
 Machine	
 Queue	
 Code	
 ...	
 193	

Bibliography	
 ..	
 195	

	

	
 ix	

List of Tables:

Table 1 - Comparison Summary of Surveyed Systems	
 ...	
 34	

Table 2 - Overhead Cost of Frame Array	
 ...	
 66	

Table 3 - Memory and Processor Benchmarks	
 ..	
 107	

Table 4 - Keyboard/VGA UVM Benchmarks	
 ...	
 125	

Table 5 - Network UVM Benchmarks	
 ...	
 133	

Table 6 - Scheduler Performance Characterization	
 ...	
 147	

Table 7 - Summary of Attack Surface Reduction	
 ...	
 153	

	
 x	

List of Figures:

Figure 1 - Bare-Metal Hypervisor	
 ..	
 3	

Figure 2 - Bare-Metal Hypervisor with Utility Virtual Machines	
 	
 7	

Figure 3 - Bear System Layout	
 ..	
 10	

Figure 4 - Example Security Techniques in the Cloud	
 ..	
 19	

Figure 5 - Threat Model	
 ...	
 21	

Figure 6 – Example Covert channel	
 ...	
 29	

Figure 7 - Overview of Steps Required for SMP Enabled System	
 	
 51	

Figure 8 - Stage-One Bootloader Pseudo Code	
 ..	
 55	

Figure 9 – Bios Memory Map Creation Assembly Code	
 ..	
 58	

Figure 10 - Initial Page Table Creation Assembly Code	
 ...	
 60	

Figure 11 - Four Level Page Table Layout (Intel Manual)	
 ..	
 61	

Figure 12 - Initial Page Table Memory Layout and Mapping	
 	
 63	

Figure 13 - C Frame Array Structure	
 ...	
 65	

Figure 14 - X86-64 Virtualization (Intel Manual)	
 ...	
 69	

Figure 15 - Recursive Pointer Page Table Entry Assembly Code	
 	
 70	

Figure 16 - C Bios Interrupt 15 Memory Map Structure	
 ..	
 71	

Figure 17 - Virtual Mapping of the Frame Array via Recursive Pointer	
 	
 72	

Figure 18 - Process for Booting Application Cores	
 ..	
 76	

Figure 19 - Process for Finding and Parsing ACPI Tables	
 ...	
 77	

Figure 20 - Remote System Descriptor Pointer (RSDP) and Search Code	
 	
 78	

Figure 21 - ACPI Layout in Memory	
 ..	
 79	

Figure 22 - Code to Enable Advanced Programmable Interrupt Controller	
 	
 82	

	
 xi	

Figure 23 - C Code to Program APIC Timer	
 ..	
 86	

Figure 24 - I/O APIC Registry Table Entry	
 ..	
 87	

Figure 25 - C I/O APIC and I/O APIC Read Write Helper Functions	
 	
 88	

Figure 26 - C Code to Initialize the I/O APIC	
 ..	
 89	

Figure 27 - C Code to Enable an I/O APIC Entry	
 ...	
 89	

Figure 28 – Application Core Trampoline Pseudo Code	
 ..	
 90	

Figure 29 - Process to Start Application (AP) Cores	
 ..	
 92	

Figure 30 - Steps to Support SMP Guest Virtual Machines	
 ..	
 94	

Figure 31 - C Structure of Hypervisor Core Specific Local Storage	
 	
 96	

Figure 32 - VCPU Structure Initialization	
 ...	
 97	

Figure 33 - Hypervisor APIC VMExit Handling Flow Chart	
 	
 98	

Figure 34 - C Structure for Guest Virtual Machine	
 ...	
 101	

Figure 35 - Function to Join AP to Virtual Machine	
 ...	
 102	

Figure 36 - C Code to Implement Spin-Locking	
 ..	
 104	

Figure 37 - Assembly Code to Idle a Core	
 ..	
 106	

Figure	
 38	
 -­‐	
 Keyboard/VGA	
 UVM	
 Kernel	
 Operation	
 ..	
 112	

Figure	
 39	
 -­‐	
 Interrupt	
 Timing	
 in	
 Prototype	
 UVM	
 ..	
 114	

Figure	
 40	
 -­‐	
 Keyboard/VGA	
 UVM	
 Running	
 on	
 the	
 Hypervisor	
 	
 116	

Figure	
 41	
 -­‐	
 kmsg_hypv_send	
 code	
 ..	
 118	

Figure	
 42	
 -­‐	
 Crossing	
 the	
 Semantic	
 Gap	
 ..	
 119	

Figure	
 43	
 -­‐	
 UVM	
 Message	
 Receive	
 Interrupt	
 Handler	
 ...	
 120	

Figure	
 44	
 -­‐	
 Launch	
 Second	
 UVM	
 Code	
 ..	
 122	

Figure	
 45	
 -­‐	
 Complete	
 UVM	
 Architecture	
 ...	
 123	

	
 xii	

Figure 46 Encapsulation of NFSD into NUVMHD	
 ...	
 130	

Figure 47 - NUVMHD Send and Reply Structure	
 ...	
 130	

Figure 48 - Scheduling Software Components	
 ..	
 138	

Figure 49 - Code to Schedule Next Process	
 ...	
 143	

Figure 50 - Dynamic Load-Balancing Code	
 ..	
 144	

Figure 51 - Diffusion Performance as Interrupt Heat Rises	
 	
 149	

	

	
 xiii	

List of Acronyms

Address Resolution Protocol ARP

Address Space Layout Randomization ASLR

Advanced Configuration and Power Interface ACPI

Advanced Programmable Interrupt Controller APIC

Application Processor AP

Application Programming Interface API

Basic Input/Output System BIOS

Basic Virtualization VT-x

Bootstrap Processor BSP

Control Register CR

Cylinders, Heads, and Sectors CHS

Destination Format Register DFR

Direct Kernel Structure Manipulation DKSM

Dynamic Host Configuration Protocol DHCP

Extended Feature Enable Register EFER

Extended Page Tables EPT

GNU Assembly GAS

Implementation of the Preboot eXecution Environment iPXE

Input Output Memory Management Unit Virtualization VT-d

Input/Output Advanced Programmable Interrupt Controller I/O APIC

Inter-Processor Interrupts IPI

Interrupt Control Register High ICRH

	
 xiv	

Interrupt Control Register Low ICRL

Interrupt Virtualization APIC-v

Lightweight IP LWIP

Logical Destination Format Register LDR

Master Boot Record MBR

Memory Management Unit MMU

Memory Mapped Input/Output MMIO

Model Specific Register MSR

Multi-Processor MP

Multiple APIC Descriptor Table MADT

Network File Sharing Daemon NFSD

Network File System NFS

Network Utility Virtual Machine Helper Daemon NUVMHD

Network Virtualization VT-c

No-Execute NX

Page Address Extension PAE

Page Directory Table PDT

Page Map Level 4 Table PML4T

Page Table PT

Page-Directory-Pointer Table PDPT

Port Input/Output PIO

Programmable Interrupt Timer PIT

Programmable Interrupt Controller PIC

	
 xv	

Return Oriented Programming ROP

Remote System Descriptor Pointer RSDP

Remote System Descriptor Table RSDT

SIMD Extension SSE

Startup Inter-Processor Interrupt SIPI

Symmetric Multiprocessing SMP

Time Stamp Counter TSC

Transition Lookaside Buffer TLB

Trivial File Transfer Protocol TFTP

Utility Virtual Machine UVM

Video Graphics Array VGA

Virtual APIC VAPIC

Virtual Machine VM

Virtual Machine Monitor VMM

Virtual Switch vSwitch

	
 	

	
 1	

Chapter 1 – Introduction

Problem: Adversaries tailor their attacks in the presence of a hypervisor, which

alone cannot protect against zero-day vulnerabilities in the guest operating

system

Hypothesis: The ability to conduct zero-day attacks can be reduced through

hardware isolation and a minimized code surface with acceptable performance.

The approach advocated in this thesis to mitigating kernel-level zero-day attacks

is to directly utilize hardware supported guest-virtual isolation in a radical new

generation of hypervisor designs. These designs -- termed utility virtual machines

(UVM) – improve security by eliminating the conventional kernel and replacing it

with a collection of specialized virtual machines, which employ hardware

protections to enforce isolation between system components such as device

drivers and system daemons. This establishes a root of trust in hardware and

prevents the compromise of one component from undermining the system as a

whole.

There are four central challenges to this technique: Can existing hardware

virtualization mechanisms be used to extend conventional inter-process

communication and synchronization mechanisms (such as rendezvous and

message passing primitives) to the hypervisor layer? Can virtualization support

	
 2	

the fragmentation of an operating system into individual utility virtual machines

to support the appearance of a cohesive system? Can the resulting security

features be implemented in a manner that has a minor impact to performance?

Finally, can methods be devised to schedule a multiplicity of tasks across multiple

cores?

1. 1 Background & Motivation

Virtualization is enabled through the addition of a new layer to the software stack

known as the hypervisor [1] or Virtual Machine Monitor (VMM) [2]. The

hypervisor encapsulates the hardware, allowing it to be used by multiple operating

system instances concurrently. This flexibility, coupled with the cost and

performance advantages of sharing the underlying hardware, has revolutionized

the computing industry: large numbers (i.e. hundreds of thousands) of generic

hardware platforms, using multi-core blade technology, are now coupled through

high-performance networking to produce a generic computing surface. Any subset

of this collection can be combined to operate in tandem for a particular

application using a multitude of operating systems.

Conceptually, the hypervisor presents a virtual machine abstraction that restricts

malicious code embedded in one operating system instance from affecting a

different instance [3], by containing it within one virtual machine using hardware

protection techniques This is achieved through type-1 or bare-metal virtualization

[4] as seen in Figure 1.

	
 3	

Figure 1 - Bare-Metal Hypervisor

	

In this configuration the hypervisor controls all of the hardware on the system. On

top of the hypervisor sits one or more guest virtual machines, which contains an

operating system’s kernel and its associated user space. The kernel provides

networking, scheduling, and many other key processes. The guest’s view of

hardware is however tightly controlled through the Intel Virtualization suite of

VT-x (basic virtualization), VT-d (input output memory management unit

virtualization), VT-c (network virtualization), and APICv (Interrupt

Virtualization) [5]. This provides the isolation necessary to protect other guests

	
 4	

from a potentially compromised guest, but does not protect data resident inside of

that guest.

Unfortunately, hypervisors have introduced their own new security challenges:

adversaries now actively attempt to detect the presence of an operating hypervisor

in order to tailor attacks accordingly [6]. A wide range of hypervisor detection

techniques have already appeared against popular systems such as VMWare,

VirtualPC, Bochs, Hydra, Xen, and QEMU [7]. Often, these techniques operate

by exploiting timing differences between virtualized and non-virtualized

operations [8]. Alternatively, they detect unusual memory locations associated

with key operating system data structures [9]. For example, the Red Pill technique

works by using the SIDT X-86 instruction to determine the location in memory of

the interrupt descriptor table; a machine running above a hypervisor will return a

location much higher in memory than one that is not [10]. Following hypervisor

detection, the adversary then attacks either the operating system, the virtual

switch (vSwitch) sharing network connectivity between virtual machines, or the

hypervisor itself [11].

The presence of a hypervisor has no impact on the known and unknown zero-day

vulnerabilities associated with a particular operating system. As a result, any

exploit that leverages a known vulnerability will operate successfully [12] against

any virtual machine running the system. Packaging this exploit within a

propagating virus provides the adversary an opportunity to compromise every

	
 5	

virtual machine in the cloud running the same instance. It is this vulnerability

amplification that poses the most significant threat to the future of cloud

computing.

After the attacker has gained a foothold and determined they are operating in a

virtualized environment, they will attempt to compromise the hypervisor. This

often entails chaining together multiple small pieces of kernel code known as

gadgets in a Return Oriented Programming (ROP) attack [13,14,15]. This allows

the hypervisor to be attacked by the code that was meant to protect it. ROP

methods are made easier as attack surface increases, which equally raises the

number of gadgets present.

ROP attacks can be built to create direct attacks against a vSwitch may undermine

the operation of multiple virtual machines on a single host by denying

connectivity to all of them simultaneously. The vSwitch provides the same

functionality as a physical switch and in consequence exhibits the same

vulnerabilities, enabling the same exploits [16]. For example, Address Resolution

Protocol (ARP) spoofing, involves the interception of valid network packets by

sending fake ARP packets to a switch [17].

Going after the hypervisor itself involves the direct exploitation of vulnerabilities

in the hypervisor. All virtual machines executing on a hypervisor have distinct

data structures, separated in hardware. This separation forms a semantic gap [18]

	
 6	

that prevents virtual machines from having visibility or impact upon each other’s

data structures [19]. Direct Kernel Structure Manipulation (DKSM) bridges the

semantic gap by patching virtual machine data structures and redirecting

hypervisor accesses to shadow copies. This allows the virtual machine to present

false information to the hypervisor regarding the virtual machine state, which

allows implants, such as rootkits [20], to persist without detection.

Virtualization provides inherent redundancy and robust, large-scale, cost-effective

availability of shared resources [21]. However, this perception is tempered by the

risk of vulnerability amplification and the paucity of knowledge regarding zero-

day exploitation: history has shown that lack of detection does not imply lack of

infection.

To combat these risks, termed utility virtual machines separate and isolate the

normal responsibilities associated with a congenital kernel as shown in Figure 2.

	
 7	

Figure 2 - Bare-Metal Hypervisor with Utility Virtual Machines

Each UVM encapsulates a particular functionality and can include, but is not

limited to, user applications, networking and Keyboard/VGA drivers. The benefit

of this reorganization is that the standard kernel is eliminated as an entity and

hardware isolation is enforced between each component of the system. If any

particular UVM is compromised, the attacker has access to only a small subset of

the system data taken as a whole. Furthermore, since most data structures and

code are unique to the infected UVM, the attacker has little information to glean

on other running UVMs. This is in stark contrast to the standard model, where a

compromise of the network would give an attacker complete control of the guest

	
 8	

and all of its associated data, including many other operating system specific tasks

and data structures.

This new approach has only become possible in the last ten years: Moore’s law

[22] has provided a rapid growth in the areas of multicore [23] and virtualization

[24] technologies. The coupling of these two mechanisms at scale forms the basis

for the UVM architecture. Each UVM is assigned a dedicated number of cores for

optimal performance of its assigned individual task. Virtualization allows for the

operation of non-homogenous VMs making it more difficult for an adversary to

cross the semantic gap. Furthermore, the fragmentation afforded by UVMs has

the dual benefit of increasing attacker workload and decreasing the attack surface,

benefits that will be discussed in detail in chapters 4 & 5.

1.2 Approach

A complete operating system based on the UVM concept has been realized in the

latest generation of a research operating system called Bear [25] under

development at Dartmouth College. This system shares its core motivations of

security, modularity, and resilience with MINIX [26], but directly integrates a

Symmetric Multiprocessing (SMP) micro-kernel with an associated SMP

hypervisor, using Intel x86-64 architectural support including VT-x and VT-d

extensions. In previous versions of the Bear system, these technologies were

coupled with extensive code sharing between the micro-kernel and hypervisor,

	
 9	

which served to reduce the attack surface and space of potential vulnerabilities

[27].

Figure 3 shows an overview of the original system that serves to illustrate the

interplay of security concepts employed in the design. Like the MINIX micro-

kernel, device-drivers are operated from user-space where they can be refreshed

in a manner similar to the MINIX regeneration process [26]. However, Bear

intentionally makes no attempt to detect intrusions or failures; instead, potentially

compromised device drivers, when not in use, are non-deterministically refreshed

to deny persistence, regardless of their infection status. A similar approach is

taken to deny persistence in the micro-kernel: the hypervisor non-

deterministically refreshes the micro-kernel periodically from a gold-standard,

either at pre-arranged or non-deterministic times. Gold-standard images are stored

within a read-only ramdisk, uploaded using iPXE’s signed and encrypted

bootstrapping. Each time a component of the system is refreshed it is also

diversified at load time [28]. This process, an enhanced form of Address Space

Layout Randomization (ASLR), ensures that no two running instances of a binary

share an exploitable address -- including the hypervisor itself, the micro-kernel,

device drivers, system daemons, and user processes. This denies surveillance and

reverse engineering while throttling vulnerability amplification caused by using

the same micro-kernel throughout a cloud or high-performance computing

infrastructure.

	
 10	

Figure 3 - Bear System Layout

In common with other designs, the original micro-kernel handles multi-core

scheduling of user processes and is responsible for protecting the micro-kernel

from user processes, and user processes from each other. All processes and layers

are hardened by strictly enforcing MULTICS-style read, write, and execute

protections [29] using 64-bit x86 address translation hardware. The use of

extended page table entries allows micro-kernel to be marked execute-only; recall

that the normal x86 paging structures do not provide sufficient flexibility [30] to

achieve this protection. Finally, although micro-kernel code is replicated in user

processes, in common with many other operating system designs, an additional

level of indirection allows its location within each process to be obfuscated [31].

Like MINIX, all potentially contaminated user processes, device drivers, and

services are executed with user-level privileges and are strictly isolated from the

micro-kernel via a message-passing interface. However, unlike MINIX, there is

no system task, all system calls, IO, and process scheduling is achieved by

	
 11	

interrupt handlers with kernel privileges. These handlers mediate between

processes and the kernel to rigidly enforce the interface. Unlike the MINIX

rendezvous mechanism [32], Bear uses an asynchronous, bounded buffer interface

similar to MPI [33] that provides a single uniform treatment of system calls, inter-

process, and off-chip inter-processor communication on blade servers. Similarly,

in the rare event the micro-kernel is unable to complete a user process request, a

VMExit may be generated, which is handled by the hypervisor in a similar

fashion as to the micro-kernel handles interrupts. The hypervisor enforces the

protection layer between the micro-kernel and the underlying physical hardware.

The hypervisor having full control of the physical hardware accesses functionality

as it is needed through memory mapped I/O (MMIO) and Model-Specific

Registers (MSR).

The rich collection of modern features in the Bear system provides the transition

point to the UVM security model. The most important concept is the rigid

enforcement of MULTICS protections [29] through virtualization hardware.

These protections ensure that device drivers exist solely in user space as a single

process that does not require kernel level privileges. Using this isolation model as

a jumping off point, the functionality of these singular device driver processes can

be transferred from a process to a UVM. However, this can only be accomplished

by overcoming the core key research challenges: building a hypervisor message

passing system, structural reorganization around utility virtual machines,

performance optimization, and scheduling.

	
 12	

Since message passing is central to MINIX and the Bear kernel alike, it will also

become central to UVMs as they communicate requests between each other. This

communication requires the creation of a message-passing interface to the

hypervisor. This is particularly interesting facet of the research, since many

members of the research community seek to operate within the hypervisor for the

smallest possible time for efficiency. A message-passing interface requires

additional compute cycles inside the hypervisor and consequently has the

potential to slow the guests operation to some degree. However, since each UVM

is not a full-fledged kernel, it was initially unclear how the reorganization would

impact performance overall. As we will see, utility virtual machines trade what

were once kernel cycles for hypervisor cycles. Unexpectedly, the performance

results developed in this thesis show that the separation of duties and direct

reliance on modern hardware actually generates a net improvement in

performance (Chapters 4 & 5).

To demonstrate the concepts, the latest generation of the Bear operating system is

realized through a collection of three individual UVMs: a network UVM, a

keyboard/VGA UVM, and a shell UVM that handles the responsibilities of a

typical shell and is capable of scheduling user processes. Isolation between UVMs

is enforced through hypervisor protection hardware and only legitimate

communication can occur through the hypervisor messaging system. The

	
 13	

hypervisor schedules these three UVMs statically on bootstrapping to a set

number of cores present on the system.

A critical aspect of cloud computing and computing in general is the requirement

of efficient, reliable, and scalable scheduling of processes. These aspects become

more critical as multiple UVM’s schedule multiple processes simultaneously.

Specifically, one UVM may run a scheduling algorithm to provide fairness, while

another could pin processes to specific cores with particular hardware. To meet

the criteria of efficiency, reliability, and scalability a diffusive scheduler [34] was

explored within the shell UVM. This algorithm had previously been shown to be

simple, scalable, and have attractive convergence properties under large scale

simulations, but had not been previously been employed in practical systems.

1.3 Performance Metrics

Industry standard methods are used to assess performance in this thesis. The

performance of the UVM system has been compared to standard monolithic

operating systems with associated hypervisors and the original Bear system,

operating on generic Dell workstations. Two benchmark suites were employed:

To assess system memory utilization, a test suite developed by Chuck Lever and

Chuck Boreham at the University of Michigan measures the performance of

malloc() in a multithreaded system [35].

	
 14	

In addition, the popular AIM9 benchmark suite is used to measure processor

synthetic overhead through its addition, subtraction, and multiplication modules

[36]. These tests stress the system by executing instructions that specifically target

the internal processor logic.

Beyond system benchmarks, recent studies have confirmed our intuition that the

number of vulnerabilities in a code base is proportional to its size [27].

Consequently, attacker workload is estimated in terms of lines of source code

loaded in memory. Each utility virtual machine presents a unique sand boxed

attack surface, which can be enumerated. The CLOC utility was used to count

these lines of code [37].

1.4 Contributions

The contributions of this research are:

• A novel system architecture based on the concept of Utility Virtual

Machines in which the operating system kernel is replaced by a collection

of virtual machines, each encapsulating a distinct system function. This

architecture improves security by sandboxing system functions within

virtual machines using hardware protection techniques.

• A body of practical implementation techniques that serve to realize

systems based on UVM’s.

	
 15	

• A practical demonstration and experimental analysis of UVM architecture

that assesses memory utilization, processor performance, and impact on

attacker workload based on three exemplars:

o A Network UVM that comprises all the functionality to

encapsulate a network card driver, network file system process,

and network stack.

o A keyboard/VGA UVM that contains all I/O functionality to

interact with users [38].

o A shell UVM that isolates the functionality to fork and schedule

user processes on multiple cores [38].

• A generalized rendezvous-style message-passing system between UVMs

that operates through the hypervisor, is adapted from those employed to

provide system calls [38], and leverages modern APIC-interrupt

mechanisms for efficiency

• A practical heat diffusion scheduler to improve performance of process

scheduling in the UVM architecture with an associated body of

experimental analysis.

• A novel hypervisor shim that inserts itself under a running micro-kernel

	
 16	

and leverages virtualization technology to enforce execute-only memory

protection [30].

• A practical method for combining iPXE, DHCP, TFTP, and NFS to load

binaries across the network and diversify them at load time [28].

• Creation of a micro-kernel that is treated as a dynamically linked library,

which enables kernel diversification on a per-process basis [31].

• A body of practical techniques for realizing advanced hypervisor and

micro-kernel designs that leverage modern 64-bit multicore and

virtualization hardware. (Submitted to software practice and experience).

1.5 Thesis Organization

In outline, the thesis is divided into the following chapters:

Ch 1: Introduction states the hypothesis and the associated challenges posed by

the thesis, motivates the research, identifies the contributions, and describes the

assessment metrics used in analysis.

Ch 2: Related Work provides a survey of the relevant literature and demonstrates

the opportunity to advance system security through the techniques developed in

this thesis.

	
 17	

Ch 3: Symmetric Multiprocessing describes the multicore hypervisor and micro-

kernel created as part of this thesis. This chapter explores the design choices and

specific details of bringing SMP to a system from boot to virtualization.

Ch 4: Utility Virtual Machines (UVM) describes the creation of the UVM

rendezvous message passing system and its use to couple together the first UVM

prototypes through the hypervisor.

Ch 5: A Further Abstraction: The Network UVM discusses the challenges and

solutions for moving a non-trivial operating system component into a UVM

encapsulation.

Ch 6: Heat Diffusion Scheduling details the implementation of a novel scheduling

technique to improve performance in multicore environments.

Ch 7: Future Work and Conclusions makes concluding remarks on the work

presented in earlier chapters and describes directions for future work.

	
 18	

Chapter 2 – Related Work

Prior to the start of the UVM work, a survey and analysis of the current security

measures implemented with hypervisors to prevent ROP and other attacks was

conducted. The viability of an efficient virtualization layer has led to an explosive

growth in the cloud computing industry, exemplified by Amazon’s Elastic Cloud,

Apple’s iCloud, and Google’s Cloud Platform. However, the growth of any sector

in computing often leads to increased security risks. This chapter explores these

risks and the evolution of mitigation techniques in open source cloud computing.

Unlike uniprocessor security, the use of a large number of nearly identical

processors acts as a vulnerability amplifier: a single vulnerability being replicated

thousands of times throughout the computing infrastructure. Currently, the

community is employing a diverse set of techniques in response to the perceived

risk. These include malware prevention and detection, secure virtual machine

managers, and cloud resilience. These three categories and their roles in

preventing an attacker from gaining access to the cloud are illustrated in Figure 4.

	
 19	

Figure 4 - Example Security Techniques in the Cloud

	

Omitted from Figure 4 are cloud services that provide authentication such as

lightweight active directory protocol servers and trusted computing techniques as

they are outside the scope of this survey. Initially, the attacker has to overcome or

bypass the intrusion detection and prevention systems typically employed at the

cloud boundary. They are then faced with a secure hypervisor usually installed on

a single host; whose purpose is to restrict access to kernel and hypervisor data

structures. Finally, cloud resilience, is used by a host to restore a single

compromised or failed virtual machine to a known good state. Although not

currently prevalent throughout the industry, hypervisors offer the opportunity to

restrict the attacker’s access to the base of the software stack. Since typically the

number of vulnerabilities is directly related to the number of source lines of code

[27], this would allow tight control of the hardware and allow operating system

designers to build successive layers on a secure base of trust. The small size of the

1	
 2	
 3	

	
 20	

hypervisor also opens the door to formal reasoning concerning its security

properties [39]. Unfortunately, these ideas have yet to be cohesively integrated

and their impact upon security quantified. In the sections that follow we explore

the building blocks that are available for improving cloud security and assess

them on the basis of their performance impact, ability to reduce the attack

surface, detect known and zero-day threats, resolve detected threats, and increase

attacker workload by denying either surveillance or persistence.

2.1 Threat Model

The security implementations analyzed in this chapter and the thesis as a whole,

address the threat model for intrusions employing remote control outlined in

Figure 5. Attacks involve several steps that begin with surveillance to determine

which vulnerabilities exist [40]. Vulnerabilities may revolve around specific

people, processes, organizations, and network infrastructures. Based on the

available vulnerabilities, the coordinated attack involves multiple initial touches

on target networks that develop points-of-presence through some form of implant

[41]. The initial touches may use remote user- or kernel-level exploits [42],

insiders with legitimate user-level accesses [43], theft of legitimate credentials

[44], supply chain interdiction [45], physical attacks at an end-point device [46],

and a wide variety compromises based on radio frequency and infrastructure

weaknesses. Development from the initial points of presence may involve

privilege escalation [42], removing exploit artifacts, and hiding behavior [20].

On-going surveillance may involve obtaining a copy of the binary codes and

	
 21	

using reverse engineering [47,48] or fuzzing [49] to open additional attack

vectors. The implants then persist for a time sufficient enough to carry out some

malicious effect, obtain useful information, or propagate intrusion to other

systems [50].

Figure 5 - Threat Model

Unlike the time to execute an exploit, the time spent in surveillance and

persistence may range from minutes to months or even years depending upon the

desired effects. Moreover, the presence of an intrusion may never be detected by

network or on-host defenses but instead may be recognized only indirectly in a

deviation from expected behavior, or may be derived from outside sources.

Nevertheless, each cloud security technique represents an integral building block

in the multilayered defense of the cloud. Malware detection and prevention

	
 22	

systems are the initial line of defense in preventing an attacker from gaining a

foothold on a cloud. The secure hypervisors present a hardened code base that

restricts access to hardware to all, but the most privileged operations. Lastly,

cloud resilient solutions are present to protect against the unknown exploits,

which may allow an attacker to operate on a cloud indefinitely.

2.2 Malware Detection and Prevention

Malware detection was one of the first techniques implemented after the

introduction of hypervisors. To achieve this, researchers paired the proven

technology of Intrusion Detection Systems (IDS) with the ability to hide in a

virtual machine. In this scenario, the IDS still performs the same function of

identifying patterns of malicious behavior on a system that may be compromised

[51]; for example a proof of concept based on the Snort IDS successfully

prevented a Distributed Denial of Service (DDoS) attack [52]. This

implementation installed a virtual machine that ran Snort on top of the VMware

hypervisor to monitor network traffic to all guest virtual machines attached to a

virtual switch. Once running, the IDS dealt with DDoS attacks in two steps:

Initially, attacking computers were blocked by Snort; subsequently, the virtual

server automatically moved the application under attack to a new location in the

cloud. This demonstrated that an IDS can function inside the cloud; however, the

implementation was just as vulnerable to zero-day attacks as non-virtualized

IDS’s [53]: attacks were missed due to IDS configuration and the failure of

signatures to detect new attacks.

	
 23	

The Hybrid Virtual IDS is a solution that leverages the strengths of the cloud and

improves upon the previous Snort implementation [54]. The approach combines

resilience of a virtual IDS and the versatility offered by a host based IDS. This is

possible through the use of integrity checking [55] and system call trace analysis

[56]. Integrity checking is a static detection process in which a changed file is

compared to a gold standard to determine if the change is malicious. System call

trace analysis dynamically flags anomalous system call behavior as potentially

dangerous. These two approaches are implemented inside of a virtual machine to

provide an isolated environment. A custom hypervisor is then used to ensure the

isolation between all virtual machines. To provide functionality to the IDS, the

hypervisor has hooks that allow the inspection of other guest virtual machines

running on the hypervisor. This allows the hybrid virtual IDS to remain isolated

from other running virtual machines, while still allowing it to access data from the

virtual machines it is monitoring. This technique performed well in testing

conducted by the authors of the Hybrid Virtual IDS, but returned unexpected

performance results: as the IDS decreases the length of time between inspecting

of the monitored virtual machine, the workload processing time did not increase

linearly as to be expected and instead became erratic. The cause of this erratic

performance is open to additional research.

With the introduction of a hypervisor and a virtualized IDS, it was only a matter

of time before firewalls were moved into the cloud. One of these virtual firewall

	
 24	

implementations is VMwall [57], which runs in the privileged virtual machine

that controls the Xen hypervisor and uses virtual machine introspection [58]. This

is the process of inspecting the data structures of a separate virtual machine. To

enable this functionality, the Xen hypervisor has added hooks that capture all

network connections created by a process. The data pertaining to these

connections is then passed to VMwall for analysis. The connection is either

allowed or blocked by using a whitelist (a list of approved processes and

connection types). To deter false data during introspection, kernel integrity

checking [59] is used to verify the state of kernel data structures in the guest

virtual machines. This is necessary, as the primary method of inspecting traffic is

through these data structures; malicious modification may compromise the

monitoring of traffic. However, VMwall may be vulnerable to hijacking of a

whitelisted process or an already established connection. The only method of

detection against the compromise of an approved process is through the

checksumming of the in-memory image of that process. This is performed by

ensuring that the hash of a process has not changed from that of one contained in

the whitelist. Due to the performance impact of hash analysis, this method is

generally not implemented. Hijacking an established connection can be partially

prevented through time outs associated with kernel rules contained in the

whitelist. To fully prevent this type of compromise, deep packet inspection could

be used, but is not currently employed by VMwall. Importantly, the employed

introspection techniques cause a minimal performance impact: the additional

overhead is 7% for file transfers from hypervisor to guest and 1% for file transfers

	
 25	

from a guest to the hypervisor. Added overhead for Transmission Control

Protocol (TCP) and User Data Protocol (UDP) connections are negligible;

increases are measured in microseconds.

An alternative approach to detection techniques, like VMwall and hybrid IDS, are

prevention methods. One security appliance that performs prevention is

Malaware, which is designed to prevent malware that tailors attacks upon

detection of a hypervisor [60]. To deter this initial identification of a virtual

environment, a signature based method is used. In this instance, a signature is an

instruction that should not be executed by an unprivileged process. As an

example, when a process such as Red Pill attempts to run the SIDT instruction, it

will be flagged as malicious. However, as the authors of Malaware have stated, a

signature based approach is only effective against known types of malware. To

combat zero-day threats, two behavior based approaches that utilize dynamic

analysis are proposed [61]. This could be accomplished by first learning the

current process and its page table base address. With this, it is possible to check if

the current instruction register belongs to the process’ code pages. If this mapping

does not exist, Malaware could flag the process as malicious. The second dynamic

analysis method suggested is taint tracking. Changes to the system, otherwise

known as taint, are created, when a process modifies any code or memory

location. Accordingly, when taint is created in monitored locations, the offending

process is immediately flagged as malicious. An added benefit of taint tracking is

it defeats malicious code that has been transformed to look harmless, also known

	
 26	

as code obfuscation [62]. Once loaded into a monitored region, the obfuscated

code is immediately marked as tainted and the associated process is flagged as

malicious. Unfortunately, only the signature based piece of the detection has been

implemented and no data relating to added overhead has been collected. However,

the initial detection results were promising with a malware detection rate of 76%.

Lastly, it is important to note that techniques that alter known memory states,

such as address space layout randomization (ASLR) may increase the difficulty of

this type of taint tracking [63].

Another prevention method, guest view casting [64], moves malware prevention

from the guest virtual machine to the hypervisor. This approach reconstructs the

data structures of the guest for analysis at the hypervisor level. This is achieved

by translating guest virtual memory addresses to physical memory addresses, then

reading the raw data from the guest’s virtual hard drive. The reassembled state in

the hypervisor can then be compared to the guest’s state using viewing tools such

as Windows Task Manager and memory dump to display all processes in

memory. The presence of discrepancies between the two states may indicate the

existence of malware in the guest. The authors have labeled this method of

searching for discrepancies between states as view comparison-based malware

detection. An outgrowth of this method is to use anti-virus software to scan the

guest’s state from inside of the hypervisor. The use of anti-virus outside of the

guest shows that it identifies malware more effectively than anti-virus running

inside a virtual machine. Additionally, performance of anti-virus is improved

	
 27	

outside of the virtual machine. The primary drawback to this approach is the

assumption that the hypervisor has not been compromised. The authors agree that

malicious code that targets the hypervisor [65] can compromise their approach.

Although detection and prevention are important, the last two decades have

demonstrated that it is unlikely that malware can be eliminated completely [66].

Security researchers in an attempt to understand these attacks have to rely on

system logs that lack integrity [67] and are often incomplete [68]. The ReVirt IDS

[69], which runs on UMLinux [70]; was created in an attempt to improve upon

these inadequacies. This is accomplished by creating logs for all of the relevant

system level information needed to replay what transpired at an instruction by

instruction level for a specific virtual machine. This allows administrators to

determine all the relevant information pertaining to an attack. The overhead of

performing these functions is 13-58% for kernel tasks and up to 8% for logging

tasks.

2.3 Secure Virtual Machine Managers

Hypervisors have afforded researchers with new security capabilities. However,

the hypervisor itself has come under attack as a way of gaining control of a

system [71]. This has led to the introduction of Secure Hypervisors that reduce the

attack surface and increase reliability by reducing the number of lines of code

[27]. sHype [72], designed by IBM, increases security by taking the idea of

control flow enforcement first seen in SELinux [73] and applying those controls

	
 28	

on information flows between virtual machines through a mandatory access

control model. Using intricate security policies; unfortunately, these make it

difficult to guarantee security and can be over 50,000 lines of code [74]. To

remove this level of complexity, sHype affords the same control flow protections,

but at the hypervisor level and without the need of a policy administrator. These

information flows are maintained through the use of a reference monitor that

decides what connections to accept and deny between virtual machines. The

sHype approach creates a flexible architecture, which allows it to support many

different security modules [75]. This is accomplished in around 11,000 lines of

code; SELinux alone is over 85,000 lines of code.

The performance impact of sHype enforcement policies is less than 1% [72].

However, sHype’s primary shortfall is that it does not completely protect against

unauthorized transfer of information between two virtual machines that are not

allowed to share information. Figure 6 illustrates the problem: nodes A, B, and C

represent three different virtual machines and all are connected to a reference

monitor.

	
 29	

Figure 6 – Example Covert channel

	

Virtual machines A and B are not allowed to share information, but both are

allowed to share information with virtual machine C. A covert channel is created,

when virtual machine C acts as an intermediary and passes information between

A and B. In this case the reference monitor would not intervene, as it only sees

information being transferred from A to C and from C to B. Fortunately, the

addition of a Chinese wall (communication rules) can be added to sHype to

protect against this covert channel [76]. In this case, the rule would only allow

two of the three virtual machines to run at any one time. However, this method

has the drawback of causing a decrease in performance of up to 9.1% [77]. This

performance impact can be mitigated by performing Chinese wall policy checks

	
 30	

at virtual machine creation and then caching these decisions. Since, policy

changes are infrequent, this configuration reduces the performance impact to less

than 1% [78].

A different direction from control flow enforcement is used in the noHype

hypervisor [79]. This minimalist approach removes as much as possible from the

hypervisor; unfortunately, no published numbers for lines of code are available.

However, the first prototype was based on a stripped down version of Xen 4.0;

implying that it falls somewhere less than 1.6 million lines of code [80]. The code

count was reduced by shrinking the size of the hypervisor by following four rules.

First, noHype pre-allocates processor cores and memory to virtual machines. This

allows the virtual machine to control its own hardware, which improves

performance. Second, each virtual machine is assigned its own I/O device. Being

in the cloud, it is assumed that these virtual machines only need network interface

cards (NIC). The issue here is that servers have a limited number of NICs.

Thankfully, newer NICs take advantage of Single-Root I/O Virtualization [81],

which allows them to present themselves as multiple NICs. Thus, each virtual

machine on a server is able to receive its own NIC, even if there are more virtual

machines than NICs. Third, noHype provides the user with a predefined guest

virtual machine in order to control the discovery of hardware. This also prevents a

user from uploading a malicious guest virtual machine, which could attack the

hypervisor. Lastly, noHype avoids indirection that occurs through the creation of

virtual cores and memory, since cores and memory are assigned directly to each

	
 31	

virtual machine. These four principles were tested against a standard Xen 4.0

install and startup time was reduced by 1% in the noHype implementation.

However, noHype loses the ability to perform any introspection of the guest

virtual machines as the hypervisor is limited in functionality. Thus, a virtual

machine in the noHype cloud could become infected without noHype being aware

of the infection.

Another popular feature of the cloud is live migration of virtual machines [74].

This can be seamlessly accomplished with little downtime thanks to

virtualization. However, migrations lose the states maintained by stateful firewalls

[82] and IDS’ [83]. These states can be maintained using a network security

enabled hypervisor (NSE-H) designed on top of the Xen hypervisor [84]. This

builds on the concepts used in secure hypervisors, but adds support for secure file

transfers. The performance impact of this method is measured in downtime,

which is the time a virtual machine is not available during transfer. The cost of

securing these migrations is up to a 15% increase in downtime versus downtime

of non-secure transfers [85]. This downtime occurs for two reasons when

maintaining the security context of the virtual machines being migrated. The first

is the additional time needed to securely copy a virtual machine’s memory space

from one host to another. The second is the NSE-H security additions, as they are

using additional resources on the system.

	
 32	

2.4 Cloud Resilience

An often over-looked aspect of cloud computing is Resilience, defined as the

ability for a system to recover and continue to provide services when a loss of

hardware or software occurs [86]. One such system, Cloud Resilience for

Windows (CReW) [87], expands the idea of resilience to the security domain

through the use of strong security in guest virtual machines [88], and

introspection [89]. Implementation is on top of the 270,000 plus lines of code that

comprise the kernel-based virtual machine hypervisor [90]. This has enabled

CReW to effectively prevent attacks from some rootkits and repair any damage

they may have caused, but at a cost to performance as the number of virtual

machines increases or security level is raised. At a strict level with three virtual

machines, CReW adds ~48% increase in time needed for CPU tasks and ~279%

increase in time required for I/O related tasks. For the paranoid setting, CReW

adds ~116% increase in time for CPU related tasks and adds ~347% increase in

time for I/O related tasks [87].

A technique that builds upon the ideas presented in CReW and supports other

operating systems is that of hypervisor-based efficient proactive recovery [91].

This approach makes the assumption that no matter what defense is implemented

on the cloud, a machine will eventually be maliciously compromised or taken

offline. Thus, after particular failure conditions are met, the guest virtual machine

is refreshed from a gold standard. A prototype of these concepts was developed

using a modified Xen hypervisor [92]. Testing has shown there is a balance

	
 33	

between throughput and availability. Thus, a user of this method can choose

between lower throughput and higher availability or higher throughput and lower

availability when faults occur.

The Bear operating system is a minimalist implementation that builds resiliency

on top of a secure hypervisor [25]. A key design choice is the strong enforcement

of separating core functionality into four layers, which is typical of modern micro

kernels, like the MINIX operating system [93]. Importantly, the attack surface is

reduced with a shared code base (>50%) of 10,903 lines of code shared between

the Bear Hypervisor and Kernel. The size is attributable to a small custom

hypervisor and small custom kernel. Resiliency is derived from non-

deterministically refreshing the virtual machines on the hypervisor to a gold

standard after a period of time. This refresh is done by starting a second virtual

machine from the known valid state and then transferring functionality to it, all

while simultaneously tearing down the first virtual machine. By using this

method, control is seamlessly transferred between virtual machines and without

an impact to performance. Also, any known or zero-day malware present on the

torn down virtual machine will not be present on the newly started virtual

machine.

2.5 Comparative Analysis

Table 1 presents a summary comparison, of the approaches based on reduction of

the attack surface, prevention of zero-day threats, and overhead. The “Reduces

	
 34	

Attack Surface” category shows that all of the technologies other than sHype and

Bear rely on a large code base.

Cloud Security
Implementation

Reduces
Attack
Surface

(lines of code)

Malware
Detection

Mitigates
Zero-Day
Threats

Added
Overhead (%)

Malaware > 725K yes no no data
Guest View

Casting
> 1,600K yes no Reduced up to

70%
Virtual Snort > 300K yes no no data
Hybrid IDS > 300K yes no ~4-36%

VMwall ~ 1,600K yes no 1-7%

ReVirt ~ 1,800K no yes 8-58%

NSE-H > 1,600K no no 15%

Shype ~ 11k no no < 1%
Shype with

Chinese wall in
Critical Path

> 1,600K no no 9.1%

Shype with
Chinese wall

outside Critical
Path

> 1,600k no no < 1%

NoHype < 1,600K no no Reduced up to
1%

CReW > 270K yes yes ~48-347%
Hypervisor-

Based Proactive
Recovery

~ 1,600K yes yes ~8-12.7%

Bear ~ 11k Not
Applicable

yes < 1%

Table 1 - Comparison Summary of Surveyed Systems
	

This poses a concern, as demonstrated by the authors of “Reliability Issues in

Open Source Software”, who have shown that errors occur at a rate of .09 defects

per thousand lines of open source code. This problem is worse for closed source

	
 35	

systems, with .57 defects per thousand lines of code. Although the numbers will

vary with code base naturally, this result that indicates Xen will have 144 defects,

KVM 25, UMLinux 162, sHype and Bear each present a single defect. An

interesting comparison was provided between open source software and closed

source software. Due to the partial unintended release of 300,000 lines of

VMware kernel code; the code could contain up to 171 defects, which is more

defects then a full install of UMLinux. Obviously, sHype and Bear systems are a

bare minimum install and have less functionality when compared to the other

hypervisors. This has led to the sHype architecture being ported to the Xen

hypervisor by the authors of “Building a MAC-Based Security Architecture for

the Xen Open-Source Hypervisor”, which has the net effect of increasing

functionality and potential number of defects. The key takeaway is that a small

code size and open source distribution are desirable to prove a system to be

reliable and secure. However, closed source systems, which are outside of the

purview of this article, do exist and provide similar security features. Two such

commercial hypervisors not reviewed are Citrix XenClient and HyTrust.

After evaluating each system on its abilities to perform “Malware Detection” and

“Prevents Zero-Days”; there were two clear outliers. Malware detection and

prevention methods primarily protect against known threats, because of their use

of whitelists and signatures. However, ReVirt is the outlier in this category, as it

provides capabilities to remove zero-days; unlike its counterparts, it has no ability

to detect malware. Secure hypervisors restrict access to the hypervisor but

	
 36	

generally provide no malware detection abilities or zero-day prevention. Lastly,

resilient systems such as CReW and hypervisor based proactive recovery have

shown promising results in both categories. The model of whitelists and

signatures is replaced with restoration upon detection of anomalous system

behavior. Thus, both known malware and zero-days are removed from the system

when it is restored to a valid state. Resilient systems do not prevent the initial

compromise from known threats, unlike malware prevention and detection

systems. The outlier in this group is Bear, which makes no attempt to check for

anomalous behavior. Instead, it assumes the system will eventually be

compromised and therefore refreshes the system non-deterministically. This has

the same end result of removing any known or zero-day attacks that may be

present, but also invalidates surveillance and prevents persistence. Nevertheless,

the effectiveness of resilient systems warrants further research.

The final category of “Added Overhead” is important, as no technique should

overly impact system performance. Both secure hypervisors and malware

prevention and detection schemes can minimally impact and in some cases

improve performance. The larger resilient prototypes such as CReW and

hypervisor proactive recovery have not yet reached this level of performance.

Bear however, has had a negligible impact on performance when refreshing

virtual machines. Research into future resilient system implementations should

aim to maintain the performance levels set by intrusion detection and prevention

systems, secure hypervisors, and the Bear operating system. This can be achieved

	
 37	

by leveraging the proven practices of either adding functionality to the hypervisor

as seen in Guest View Casting or reducing the hypervisor foot print as

accomplished by NoHype and Bear. Once this performance requirement is met,

further capabilities can be added to resilient systems, which allow for the creation

of a new cloud security architecture.

2.6 Related Fields of Work

One field of study that has not been included in this survey is the idea of trust [94]

in regards to the unauthorized access of data. One approach to handle trust in data

security is that of security labels in the cloud [95]. The goal of this approach is to

isolate customer virtual machines from each other to prevent data leakage across

virtual machines. This work is an enhancement of a trusted hypervisor that

extends trust to network storage [96]. In regards to privacy, customers are

concerned that their personal information will be leaked to those who should not

have access to it. A current solution to this problem is the use of encryption with

access control [97]. Using public key cryptography in the cloud, the user can be

sure that their data is safe and only they have access to it.

2.7 Summary

All of the techniques reviewed in this chapter have produced gains in making

cloud computing more secure. Most of the solutions strive to race to the bottom of

the software stack to combat known risks, rather than unknown zero-day risks.

Moreover, it is currently left up to the cloud provider to pick from a grab bag of

	
 38	

techniques to secure their infrastructure, which often times reduce performance in

a time sensitive environment. This has led to a diverse set of approaches in cloud

security, each with its own goals.

However, many of these same methods have increased the size of the code base of

both the kernel and hypervisor. According to Pandey et al., this represents a real

risk in that additional bugs may be present in the code. These same bugs may lead

to real vulnerabilities, which coupled with the large attack surface of the system

provide the perfect environment for ROP attacks. All of this is only made worse

by the homogeneity of the cloud running thousands of copies of the same virtual

instance.

Thus, a different approach is needed that combines the most successful techniques

to leverage multiple cores with hardware virtualization security in new ways. A

new cloud infrastructure should follow the example of noHype to minimize the

hypervisor attack surface. From there to break the monotony of guest

virtualization, the standard kernel should be broken into smaller pieces that

provide individual services. These smaller VMs can then be sandboxed through

hardware isolation in a manner that is similar to sHype. By controlling access and

information flow to these systems, anomalies due to malicious behavior can be

quickly isolated and resolved. By doing all of this, a new utility virtual machine

architecture would be created that increases attacker workload and reduces the

attack surface used in ROP attacks.

	
 39	

Chapter 3 – Symmetric Multiprocessing

The utility virtual machine architecture requires the linchpin of modern

computing that is x86 symmetric multiprocessing. These multiple cores are

required for static assignment to UVMs to provide both security and timely

performance. Therefore, a solid understanding of these technologies is critical not

only for this work, but also to any developer entering the field.

Unfortunately, the complexity associated with discovering, enabling, using, and

virtualizing multiple cores has created a paucity in the available documentation,

transferable knowledge, and readable code exemplars. This chapter describes our

experience in overcoming these hurdles in the design of a from-scratch, multi-

core operating system – Bear – for utility virtual machines. In particular,

intricacies involved in the development of a multi-core micro-kernel with an

integrated multi-core hypervisor are traced. By exploring the implementation

details, from bootstrapping through core virtualization to process scheduling, this

paper aims to fill the knowledge gaps, highlight potential pitfalls, and introduce

multicore development in a concise start-to-finish exemplar.

3.1 Introduction

Sadly, it has become increasingly difficult for systems programmers and

developers to leverage the full features of x86-64 technology effectively. For

example, the documents containing the information for finding, bootstrapping,

and operating multiple cores are spread across multiple separate large manuals

	
 40	

including, the 1,056 page Advanced Configuration Power Interface (ACPI)

Specification [98], the 97 page Multi-Processor (MP) Specification [99], and the

3,463 page Intel or 664 page AMD Software Developer’s Manual [5,100]

respectively. These specifications are in turn maintained by a multitude of parties,

each with their own vested interests. For example, the MP Specification written

by Intel was deprecated in favor of ACPI, which was written by a consortium of

computer hardware and software manufacturers. The ACPI specification was then

absorbed into the Intel written 1,084 page Extensible Firmware Interface (EFI)

Specification [101]. A similar consortium of hardware and software

manufacturers soon absorbed the EFI Specification into the 2,637 page Unified

Extensible Firmware Interface (UEFI) Specification [102]. Fortunately, each

newer specification is required to be backwards compatible with any of the older

specifications to support legacy specifications. This limits the reading material for

an entry level SMP programmer to the 5,280 combined pages of the MP

specification, ACPI specification, Intel manual, and AMD manual. Unfortunately,

Intel and AMD add to this level of complexity with their x86 chips, which support

many operation modes, be it through legacy Port I/O, Memory Mapped I/O, or

Model Specific Registers. These backwards compatibilities sometimes have a

peculiar set of consequences.

Recently, the most significant problem for X86-64 processors, stemming from

backward compatibility, resulted in a privilege escalation attack that gives an

adversary full control of the system [103]. In this example, the enduring backward

	
 41	

compatibility concerns the ability for the processor to move internal memory

mapped I/O control registers. This feature was provided so that the processor

could move its own registers to a new memory location if software was already

using the same memory address; a valuable capability when x86 processors are

operated with 32-bit addressing and virtual memory is limited to only 4 GB. In

practice, with the introduction of 64-bit addressing (x86-64), the potential for

overlap rarely occurs since virtual memory was expanded to 256 TB; however,

the feature to move the processors memory mapped I/O registers remained in

place. This alone was not a security vulnerability, until the introduction of a new

layer of processor operation and security, that operates below the kernel and

hypervisor, was introduced: This layer -- the system management mode (SMM)

[100] -- has control over the underlying physical hardware of the system, for

example, the processor cooling fans. SMM is accessed and configured through

memory mapped I/O, but access to it is heavily restricted through specialized x86-

64 instructions. Unfortunately, these instructions and restrictions can be

completely bypassed by an attack by using the ability of the processor to move its

internal memory mapped I/O addresses to memory: moving them to overlap the

memory reserved for SMM. Thus, an attacker can gain control of the system,

using less privileged processor memory mapped I/O registers, to read and write

directly to SMM.

This example, the volume of the combined specifications, and the complexity of

hardware support for security -- available through multi-core isolation,

	
 42	

virtualization, and 64-bit paging and protection structures -- virtually guaranties

that systems designers must operate behind a impenetrable veil of interrelated

constraints. Consequently, many developers reach only a superficial level of

understanding and then abandon the more sophisticated concepts, relying instead

upon existing implementations associated with monolithic operating systems,

such as Linux [104] or hypervisors such as Xen [1]. This is particularly true of

research operating systems that utilize only the most basic processor support

[26,105,106].

This paper redresses these shortcomings by providing a complete path to

multicore via an all-in-one description of a minimal, virtualized multi-core system

composed of a micro-kernel with an integrated hypervisor. The description uses

well-known implementation techniques, to focus attention on the use of the

underlying architectural support. For example: cores are statically partitioned

among virtual machines, each virtual machine runs a single micro-kernel, each

microkernel schedules processes round-robin across cores owned by the virtual

machine and mutual exclusion of multiple cores from the scheduling queue uses a

single global lock (similar to early versions of Linux). These design choices can

readily be improved and optimized using well known techniques that are

unrelated to the underlying hardware concepts. Although reasonably

straightforward, the design performs surprisingly well when compared with

Fedora, Ubuntu, and Xen; mature systems that have undergone hundreds of man-

years in development and optimization. This can be directly attributed to

	
 43	

extensive use of Intel 64-bit hardware mechanisms employed through their

recommended implementation methods.

3.1.1 Basic Concepts

Basic Input/Output System (BIOS) [107] – The BIOS constitutes firmware

installed on a system that is the first code to run when the system is powered on.

The BIOS is responsible for initializing all of the core hardware components (i.e.

VGA, Network, Processor Cores, Memory, etc.) into a known good starting state,

specified by the hardware vendor. The BIOS specification for multicore

processors, detailed in the Intel Developer Manual [5] states: “The MP

initialization protocol defines two classes of processors: the bootstrap processor

(BSP) and the application processors (APs). Following a power-up or RESET of

an MP system, system hardware dynamically selects one of the processors on the

system bus as the BSP. The remaining processors are designated as APs.” Upon

completing initialization the BIOS loads the Master Boot Record (MBR) from

either a physical hard drive, disk, or memory disk (RAMDISK) transferred over

the network. Once loaded the BIOS turns execution over to the BSP, which starts

execution at the beginning of the loaded MBR.

Master Boot Record (MBR) [108] – The MBR emerged with the PC DOS 2.0

system in 1983 and corresponds to the first 512 bytes of code loaded from disk by

the BIOS; it is subsequently executed by the BSP. The MBR is restricted to 512

bytes in size, an historical artifact associated with dividing hard drives into

	
 44	

cylinders, heads, and sectors (CHS) for addressing [109]. It is important to know

that the MBR must conform to this addressing scheme and that it uses CHS to

load the next 31.5KB from disk, 512 bytes at a time. The next blocks of code

loaded by the MBR, shall refer to as the stage one and stage two bootloaders; their

functionality and purpose will be discussed at length in this paper. Over the years

the MBR has become a standard element of modern personal computers and thus,

while not discussed further here, it is still an important legacy component of

modern computer systems.

Bootstrap Processor (BSP) – The BSP, initialized by the BIOS in a

multiprocessor system, is the one and only processor core on a multicore

processor with the “IA32_APIC_BASE Model Specific Register (MSR) set” [5];

this flag signifies the core that is the sole processor to begin execution. The BSP

begins execution in 16-bit real mode (explained below) at the start of the MBR. In

this paper the system described runs on an 8-core Intel i7 multicore processor.

Thus, throughout the paper, the standard term BSP is used to refer to the core that

was designated by the BIOS as the sole startup processor core.

Application Processor(s) (AP) – All other processor cores on the system “have

the IA32_APIC_BASE MSR cleared” and are known as the AP cores [5]. These

AP cores are initially placed by the BIOS into a HALT state [99]. They can only

be used by the operating system after the BSP has made the necessary system

configurations, and subsequently signals each individual AP to begin execution.

	
 45	

As with the BSP, this paper uses the standard term AP to describe any of the non-

BSP cores on the system.

Symmetric Multiprocessing (SMP) – Linking the BSP with a set of identical APs

in a “tightly-coupled system where some or all of the system’s memory and I/O

facilities are shared” [110] is the basis for an SMP system. On x86 systems this

coupling is provided by a system bus that allows the BSP and APs to access

memory and I/O, as well as exchange interrupts [99]. The main line of

communication between cores occurs through inter-processor interrupts delivered

using an Advanced Programmable Interrupt Controller (APIC), each BSP and

APs has its own, dedicated local APIC.

Advanced Programmable Interrupt Controller (APIC) – In general, the APIC

provides both interrupt routing and redirection between cores; this was not

possible with earlier interrupt controllers such as the Intel 8259 Programmable

Interrupt Controller (PIC) [111]. SMP is enabled when the BSP’s local APIC

generates a start signal to each APs local APIC along the shared system bus [99].

Although, inter-core interrupts can also be used to support multi-threading (by

allowing one core to inform another of Transition Lookaside Buffer shootdowns

[112]), this paper focuses on SMP initialization as the micro-kernel design

replaces shared memory with message-passing to enhance security.

Input/Output APIC (I/O APIC) – The APIC architecture, as defined by Intel, is

split between two components: the Local APIC associated with each core, and a

	
 46	

discrete I/O APIC [99]. The I/O APIC is used to re-direct interrupts generated by

external peripherals, such as the network card or keyboard, to one of the cores on

the system.

16-bit Real Mode – Recall that, the BIOS hands the hands off control to the BSP

in 16-bit real mode. This was the first memory-addressing mode instituted in the

Intel 8086 processor [113]. It provides no support for memory protection,

multitasking, or operating system ring levels: the BSP is provided with full access

to the physical memory and hardware [5]. The importance of this mode is that the

BIOS can still be accessed as long as the BSP operates in this mode. This allows

the BSP to probe the BIOS for key system information, such as the amount of

physical memory installed.

32-bit Protected Mode – Protected mode was introduced with the Intel 80286

processor [114] and featured a number of improvements over real mode. For the

first time, operating system ring-level security was supported in hardware, as well

as memory protection through segmentation; eventually paging and multitasking

(through the Task State Segment Register) [5] were also added. Unfortunately, the

memory protection bits on page tables in this mode only provided markings for a

page to be read-only, read/write, user, or kernel. Thus, to enforce a full suite of

MULTICS-style read/write/execute protections [29], segmentation must be

combined alongside paging. In practice, segmentation has not been widely

	
 47	

adopted; consequently, this paper uses protected mode only to quickly transition

into 64-bit long mode.

64-bit Long Mode – Long mode was introduced with the AMD Athlon 64 line of

processors [100] and was meant to address some of the limitations of protected

mode; primarily, limited addressing allowing for only 4GB of virtual memory.

Long mode is expandable up to 16 exabytes (1018) of virtual memory, though

current processors are limited to 256 TB. Segmentation was completely replaced

by 64-bit paging in long mode. A no-execute (NX) bit was also added to the

paging structures to strengthen MULTICS-Style protections, however, it should

be noted that these structures lack the ability to mark a page execute-only.

Control Registers (CR) [5] – The BSP and APs each have their own set of CR’s,

just as each has its own local APIC. Each core must setup its CR’s before using

other processor functionality. This paper focuses on programming of CR0, which

provides basic processor operating modes, CR3, which references the physical

RAM address of the start of a page table in use by a core, and CR4, which

provides advanced processor capabilities. For example, each core must set bit 13

of CR4 to 1 if the Intel virtualization extensions (VT-x), are to be used to support

a hypervisor. The complete layout of these three CRs is available in the Intel

Programmer’s Manual [5].

	
 48	

Model Specific Registers (MSR) [5] – MSRs are similar to CRs in that they can

be programmed to enable various core functions in the system. Some MSR

registers are set either by the system (for example, the BIOS sets the

IA32_APIC_BASE MSR to designate the BSP) or they can be set by the operating

system (for example, IA32_VMX_PROCBASED_CTLS2 MSR designates the

virtualization controls for APIC Access Virtualization). Accesses to the MSRs are

provided through the x86 rdmsr (read MSR) and wrmsr (write MSR) instructions.

Memory, Paging, and Memory Management Unit (MMU) [5] – Physical

memory constitutes all the Random Access Memory (RAM) installed in the

system; It is initialized by the BIOS and information concerning its size, and the

areas reserved for specific uses, can be obtained through the BIOS when

operating in 16-bit real mode. Virtual memory is a conceptually much larger

space that processes may utilize during their execution. Virtual memory addresses

are translated into physical memory addresses, through page tables, by the

memory management unit (MMU). An explanation of 64-bit paging and the

associated structures is available in the Intel manual [5]. However, to understand

this paper it is sufficient to understand how paging relates to SMP. In particular,

to understand that the BSP and APs can each operate their own independent set of

page tables, through manipulation of their own Control Register 3 (CR3), which

signifies the base of a cores virtual memory. This paper introduces the concepts of

recursive paging and a physical address frame allocator as mechanisms for

	
 49	

building these paging structures. Collectively, the ideas ensure that each core

provides a unique page table per process.

Virtual APIC (VAPIC) and APIC Access Virtualization [5] – Intel VT-x treats

the APIC as a resource that must be protected from each guest virtual machine.

This is achieved through a technique known as APIC Access Virtualization,

which creates a virtual APIC (VAPIC) for each guest. When the guest accesses its

VAPIC, the configuration of the hypervisor and virtual machine collectively

determine whether a Virtual Machine Exit (VMExit) into the hypervisor should

occur. VMexits, generated by the VAPIC, are central to an SMP enabled virtual

machine and will be discussed in detail.

Context Switching and Processor State Storage [5] – When the BSP or an AP

switches from execution of a virtual machine into the hypervisor, the state of the

general-purpose processor registers (rax, rbx, rcx, rdx, etc.) must be saved. The

associated storage is created and provided by the hypervisor, so as to preserve the

running state upon VMExit. This is necessary so as to allow the hypervisor to

either perform or deny any action taken by the virtual machine and to allow the

hypervisor to resume execution of the virtual machine immediately after where

the exit occurs. For example, if the virtual machine accesses its APIC to send an

inter processor interrupt, the VAPIC will generate a VMExit, the hypervisor must

then generate the associated inter processer interrupt for the virtual machine since

	
 50	

it is a normal part of SMP execution. The virtual machine is eventually resumed

after the instruction that caused the VMExit.

Extended Page Tables (EPT) [5] – Though not covered in this paper, EPT’s are

integral to the performance of virtualization: they provide a means of translating

what the virtual machines believes is a physical memory address into an actual

address in physical memory by the hardware. This removes the requirement that

the hypervisor translate every memory access performed by the guest virtual

machine. EPTs also provide fine-grained memory access control by adding

execute, read, and write bits, which when coupled with 64-bit long mode paging

provides the full set of MULTICS-style protections [29].

3.1.2 Overview

To realize the Bear system presented in chapter 1, bootstrapping steps from

power-on-reset to a running set of user-processes executing on top of the micro-

kernel are implemented. This overall process is outlined through abstract code in

Figure 7 and begins when the MBR hand-off to the stage-one bootloader,

operating on the designated BSP core (line 0).

	
 51	

Figure 7 - Overview of Steps Required for SMP Enabled System

The stage one bootloader is a mix of 16-bit real mode, 32-bit protected mode, and

64-bit long mode code. For this reason, it is compiled as its own flat binary to

facilitate absolute jumps between these different memory-addressing modes. If it

were compiled with ELF, the linker would interpret all jumps as 64-bit long mode

jumps (ljmp). This would generate truncation errors as a 64-bit jump address

would be cut in half for the 32-bit jump and cut to a quarter for the 16-bit jump

address. The stage-one bootloader is also restricted to 512 bytes in size, so as to

fit into one load block based on CHS loading. For these reasons it is written

entirely in assembly code to keep it small (183 lines of code); however, it is

sufficiently powerful to move the BSP from 16-bit real mode into 64-bit long

mode.

The stage-one bootloader handles all interfacing with the BIOS, which can only

be accomplished in 16-bit real mode (line 1). It communicates with the BIOS to

obtain a map of the underlying physical memory (line 2) and sets all of the

	
 52	

necessary CR and MSR bits for the BSP to enter 64-bit long mode and enable use

of floating-point instructions. It then creates an initial paging structure, sufficient

to support a stage two bootloader, written in C and compiled with ELF for

maintainability, that operates in 64-bit long mode (line 3). With these tasks

accomplished, the BSP will be running in 64-bit long mode and can initiate the

stage-two bootloader (line 4); the system does not return to 16-bit real mode once

it has entered 64-bit long mode.

The BSP executing the stage-two bootloader, uses the information obtained by the

stage-one bootloader regarding memory layout to implement a full 64-bit paging

system with the full range of 64-bit read-write-execute memory protections

afforded by the underlying processor architecture (line 5). The stage-two

bootloader is also responsible for ELF loading the hypervisor into the paging

system it has created (line 6). Once, these two tasks are accomplished the BSP can

then begin execution of the hypervisor.

In the hypervisor, the BSP will parse the ACPI tables (line 7) in order to configure

its own local APIC (line 8) and the I/O APIC (line 9). The BSP also uses

information in the ACPI tables to discover all of the remaining APs present on the

system (line 10). The BSP’s local APIC can then be used to send IPI’s to wake

the BIOS HALTED APs through their individually owned local APICs. The

individual APs will then execute a small block of trampoline code that performs

the necessary configurations to set each AP into 64-bit long mode and

	
 53	

subsequently enter the hypervisor. Once in the hypervisor, each AP must also

configure its own APIC in the same manor as used by the BSP to configure its

APIC. The APs then halt execution and wait to be assigned to a virtual machine

by the BSP. This process effectively gives ownership of all the available cores on

the system to the hypervisor. The BSP then finalizes any virtualization

configurations, such as EPT creation, needed to create a virtual machine, and

launches a virtual machine on the BSP. Using APIC Access Virtualization (line

11) and state storage created for the BSP and APs, the hypervisor is then able to

assign a virtual machine to any number of APs (line 12). For simplicity, cores are

partitioned among a fixed number of virtual machines statically; each virtual

machine bootstraps an instance of the micro-kernel, the hypervisor intercepts the

APIC boot IPI to assign additional processor cores to the virtual machine rather

than bootstrapping an AP as earlier performed by the hypervisor. The process of

joining an AP to an existing virtual machine consists of configuring it to the same

state as the cores already executing the virtual machine, i.e. the cores that share

the same EPT. The micro-kernel executing on the virtual machine may then use

the cores it is given by the hypervisor to schedule processes (lines 14 & 15).

3.2 Stage-One Bootloader

Pseudo code, for the operations that must be performed by the stage one

bootloader are shown in Figure 8. Recall that the BSP always begins operation

after handoff from the BIOS [107] in 16-bit real mode (line 0), as per the standard

introduced by the Intel 8086 processor [113]. The BIOS starts the BSP execution

	
 54	

at physical address 0x7C00, where it has loaded a Master Boot Record (MBR)

[115] from a disk, which, for the system described here, contains a memdisk

loaded by PXE-boot. The sole purpose of the MBR is to load the stage-one and

stage-two bootloader binaries from the memdisk through CHS loading. Since the

MBR is a well-known industry standard, it is not described in detail here. Once in

the stage-one bootloader, the BSP performs the necessary CR and MSR register

configurations to quickly move into 64-bit long mode. This affords the system the

full value of memory protections offered by 64-bit paging as early in the boot

process as possible. The BSP operating in the stage-one bootloader also polls the

physical memory through the BIOS in preparation for the stage-two bootloader to

further develop the 64-bit paging system. Due to the intertwined and complex

nature of 16, 32, & 64-bit boot code, it is explained in three parts: CPU

configurations, physical memory profiling, and initial page table creations. Line

number annotations are used to document where each touch point occurs in the

pseudo code in Figure 8. The complete code for the stage-one bootloader can be

seen in Appendix A.

	
 55	

Figure 8 - Stage-One Bootloader Pseudo Code

3.2.1 CPU Configurations

Recall that, inside the hardware of the BSP or AP cores reside CRs and MSRs that

control the functionality of the core. Setting these registers correctly is critical for

building an SMP hypervisor. Any misconfiguration will lead to unexpected

behavior at later stages in the development process. To alleviate these challenges,

the stage-one bootloader handles much of the implementation required to prepare

the BSP for operation in the stage-two bootloader, hypervisor, and virtual

machine running the micro-kernel. The complete list of the CRs, MSRs, and their

associated fields mentioned in this section can be found in Appendix B. However,

several registers are particularly critical to realize the pseudo code in Figure 8 and

are discussed here. The first of which is setting the general-purpose stack pointer

(rsp) for the BSP (line 1).

	
 56	

When starting in 16-bit real mode, the first register field set by the BSP is bit 0 in

CR0: the protected mode flag. Setting this field to 1 allows the BSP to enter 32-bit

protected mode (line 5). Not setting the bit will result in a system crash as the

BSP attempts to transition from 16-bit real mode to 32-bit protected mode.

Once, in 32-bit protected mode (line 6), the BSP configures CR4 (line 7) and the

Extended Feature Enable Register (EFER) MSR (line 8) to enable support of 64-

bit paging. CR4 bit 5 –the legacy Page Address Extension (PAE) [116] bit -- and

bit 7 -- allowing page tables to utilize the global flag – are both be set to 1. Page

Address Extension (PAE) is an enhancement to 32-bit paging to support virtual

addressing above 4 GB; 64-bit paging, supporting up to 256 TB, which is used in

this chapter, succeeded it. However, the PAE flag must be set, per x86-64

requirements, even if PAE is not being utilized. The global flag is a performance

improvement associated with paging: Any page that is marked global cannot be

evicted from the processor translation lookaside buffer. Utilizing global pages

provides a speed up of critical operations, such as interrupt handlers. Next, the

EFER MSR has bits 8 and 11 both set to 1: bit 8 enabling x86-64 long mode with

64-bit paging and bit 11 allowing the page table to take advantage of the No-

Execute (NX) bit. Not setting bit 8 in the EFER MSR upon transition to 64-bit

long mode has the same result as not setting bit 0 in CR0 when transitioning to

32-bit protected mode: it crashes the BSP. Lastly, the BSP enables paging through

the MMU by writing 1 to bit 31 (Paging Enable) in Control Register 0 (CR0).

	
 57	

Upon entering 64-bit long mode the BSP makes a few final configurations to

support floating point and Streaming SIMD Extension (SSE) instructions (line

16). This is accomplished by setting the monitor co-processor bit 1 and numeric

error bit 5 in CR0 to 1. The co-processor bit enables the x86 wait and fwait

instructions for handling floating point exceptions while the numeric error bit

enables them. As a floating-point unit was not always present in early systems,

the option to emulate them was present in many processors. However, with

modern x86-64 systems that is not a problem and such the BSP must be told not

to perform emulation by setting bit 2 in CR0 to 0. Lastly, the floating-point unit

must be configured to allow and use SSE instructions. This is accomplished be

enabling SSE exceptions through setting bit 10 to 1 in CR4 and enabling the use

of fast floating-point unit switching by setting bit 9 to 1 in CR4. This is the last of

the CPU register configurations made by the BSP

3.2.2 Physical Memory Profiling

Separate from setting registers is the detection of all the physical memory present

on the system (line 2). Once found, it is used later by the stage-two bootloader to

allocate a physical frame to a virtual memory page, which constitutes the basis of

paging. Skipping this step means the hypervisor or micro-kernel cannot be loaded,

no processes can be created with their own unique set of page tables, and SMP

cannot be utilized as there is no micro-kernel or processes operating in their own

memory space. Therefore, the industry standard of using BIOS interrupt 15 in 16-

bit mode is used [98]. This call returns the layout of physical memory in the form

	
 58	

of a flat memory model where the BSP could potentially directly access all of the

installed physical memory [117]. When using x86-64 paging, the information

returned from the call details if memory could be assigned to virtual address. The

following commented GNU Assembly (GAS) loop shown in Figure 9 builds the

physical memory map and implements line 2 in Figure 8

Figure 9 – Bios Memory Map Creation Assembly Code

After each interrupt call, data is loaded in back to back 192 bit blocks (Base

Address, Length, Type, Compatibility Space). This data will later be accessed by

the stage two bootloader to add pages to the initial page tables that are presented

in the next section.

	
 59	

3.2.3 Initial Page Table Creation

The initial tables are created in the 32-bit protected mode portion of the stage-one

bootloader (figure 8 lines 9 & 10) and must meet two important conditions. First,

the tables must map in the soon to be virtual to physical memory address

translations the stage-one and soon to be stage-two bootloaders have been loaded

in by the MBR. Second, the page tables must also be placed in a physical memory

location that is also covered by a virtual to physical mapping that is contained

within them upon their initial creation. These two requirements are necessary as

the BSP will cease operation on absolute memory, which it has done up until this

point [5], and instead use the MMU to walk page tables to translate virtual to

physical addresses when paging is enabled. Importantly, if the former requirement

is not satisfied the BSP will crash and the later will result in the BSP being unable

to modify and grow its initial page tables. These two requirements are satisfied

with three assembly loops that create a one to one virtual to physical address

mapping of the first 2MB of physical memory, otherwise known as an identity

map. Due to the critical fact that the BSP cannot proceed to 64-bit operation and

eventually SMP operation for the system as whole without these page tables; an

explanation of the three assembly loops used to create them follows.

	
 60	

Figure 10 - Initial Page Table Creation Assembly Code

Before the first loop in Figure 10 above, the code begins by loading the base

physical address of the Page Map Level 4 Table (PML4T) into the CR3 register

(lines: 1-2). Next, the first loop ensures the entire 4KB frame of the PML4T is set

to zero by using the rep and stosl assembly instructions, which writes 0s across

the 4KB physical address space (lines: 3-6). Initialization of the PML4T is

completed by the next loop.

	
 61	

As there are four levels of paging structures and the PML4T was previously

created; the second loop takes care of creating the Page-Directory-Pointer Table

(PDPT), Page Directory Table (PDT), the Page Table (PT) and configuring the

top three levels (lines: 7-16). The loop will iterate three times (line: 8), starting at

the address of the PML4T (line: 9), increment by 4KB size (line: 10), and create

an entry in each of the top three level tables (lines: 11-13). Each entry has the

read/write, global, and present bits set as seen in Figure 11. The PT, which

contains page frame entries only, is configured in the third loop.

Figure 11 - Four Level Page Table Layout (Intel Manual)

The PT only contains page frames and not table entries, which is the reason it is

initialized in a third separate loop (lines 17-25). To meet the two previous

requirements mentioned earlier, the PT starts mapping from physical address

0x0000 (line: 18). Also, note that all of the entries in the PT are marked

read/write, present (lines: 22-25), and global. All 512 entries of the PT will be

	
 62	

initialized by this loop (line 20), which means the memory from 0x0000 to

0x200000 is mapped (2MB). Furthermore, this is an identity map of virtual to

physical memory.

Once all three loops have run, a paging system as seen in Figure 12 below is

created. It can be seen that the PML4T has one entry that maps to a PDPT, the

PDPT has one entry that maps to a PDT, the PDT has an entry that maps to a PT,

and lastly the PT has 512 entries that identity maps 0MB to 2MB of memory.

Additionally, the two requirements set early in the initial page table discussion are

met, as the bootloader and the initial page tables exist entirely between the ranges

of 0MB-2MB.

	
 63	

Figure 12 - Initial Page Table Memory Layout and Mapping

The last act of paging and discussion on the stage-one bootloader is to create a

recursive entry inside of the initial tables PML4T (figure: 8, line: 11). As the

memory manager created by the stage-two bootloader will make primary use of

this entry, explanation on it is saved for the next section.

3.3 Stage-Two Bootloader and Memory Manager

The stage-two bootloader marks the transition to a full 64-bit long mode and the

transition to using C code for the creation and management of complex systems.

The end goal of which is to have a method in place that effectively ties available

physical memory to virtual memory, and to lay the groundwork for SMP to make

	
 64	

use of the memory system to provide each process with its own memory space.

Without an effective memory manager, SMP cannot be utilized by the system as a

whole. The memory manager presented here manages physical addresses as 4Kb

frames of physical memory through an array of frames. The virtual memory

component is managed through a technique known as recursive paging. These are

the physical and virtual memory management methods used in this system, but

are not the only means of doing so. Thus, before embarking on a solution for

memory management, it is critical to thoroughly weigh the pros and cons of this

or any other system that is chosen.

3.3.1 An Array of Structures

The job of the memory manager is to maintain mappings from physical to virtual

memory addresses. When new virtual addresses need to be mapped to underlying

physical address frames, the system needs to know which physical address frames

are in use and which are free. In this implementation, a frame array maintains this

information. The frame array itself is comprised of an array of structures.

Conventionally, a bitmap is used to maintain this information. A bitmap has a few

advantages, including a low memory footprint and constant time to look up a

given frame [118]. In the case of 4KB page size, bitmaps use 1 bit to represent

32,768 bits of memory, which accounts for an overhead of 0.003%. However, this

method also has a major drawback. With a bitmap, the only information that is

stored about a given frame is whether it is free or not. An alternative is to encode

	
 65	

the information about the frames in an array of structures, with each structure

representing one frame on the system. The C code for this structure is seen in

Figure 13.

Figure 13 - C Frame Array Structure

This method maintains the benefit of constant lookup time for a given frame, and

adds the capacity to store more information about each frame. For example, a

constant time phys2virt physical to virtual address translation can be achieved by

storing the virtual address in the corresponding structure for the physical frame to

which that virtual address maps. In addition, it is possible to store the process

identifier to which a frame has been mapped in the frame structure, allowing a

comparison between the frame array and the page tables of a given process. This

allows the micro-kernel to search for inconsistencies that would indicate some

form of memory corruption.

The cost of the additional information, of course, is a larger memory footprint. If

n is the number of bytes available on the system, P is the size of a page, and s is

the number of bytes stored in the frame array per frame, the frame array will

occupy !
!
𝑠 bytes: !"

!!
 pages. In terms of the overall physical memory (which has

	
 66	

!
!
 total frames available) this corresponds to a fraction of !

!
 of main memory

dedicated to bookkeeping. As shown in Table 2, for typical values of P, this

percentage is still small, even with generous sizes for s.

S P Overhead

16 bytes 4096 bytes 0.4%
8 bytes 4096 bytes 0.2%

Table 2 - Overhead Cost of Frame Array

Of course, the frame array is just like any other data on the system. It is stored on

physical memory and accessed by virtual addresses. Unfortunately, since the

frame array is the foundation of the virtual memory manager, initializing the

frame array cannot use typical virtual memory management. This makes

initializing the frame array a bit like changing a bike tire while riding the bike,

which is only complicated by the need to grow the initial page tables to map the

frame array.

3.3.2 Growing the Initial Page Tables Through Recursion

To grow the size of paged memory to accommodate the frame array, the operating

system must write the physical address of some new unused physical frame of

memory into a PT entry corresponding to the virtual address that the frame array

is located at. The question is: how does the system write to that page table?

The PT is an arbitrary 4k physical frame. In order to write to a location in

memory, even a PT, software provides a virtual address that is translated through

a PML4T, PDPT, PDT, and PT until finally the address whose page-size base is

	
 67	

stored in that specific Page Table entry is written. Therein lies the recursive

problem of memory management. In order to write a PT, there must be a PT entry

already written. The same is true at every level of paging structures. Naively,

writing a set of paging structures before virtual memory is “turned on” by

activating the MMU can solve this as seen in section 2.0.3. This provides a “base

case” for the recursive problem that has been stumbled upon. In fact, simply

growing this initial table does this very trick. However, this method leads to a fair

share of problems. To illustrate this, imagine the following scenario: the system

wants to set up a large and contiguous virtual memory region, for example the

user’s heap. Ideally, the micro-kernel could simply walk along an array of

physical frames, writing the address of free frames into a PT. When a PT runs out,

the micro-kernel needs to write the address of the next physical frame into a PDT

to serve as a new PT. However, with this method, that physical address must also

be written into some PT entry. Which one? Answering that question is not trivial,

and encourages dangerous solutions such as hard-coding the address of paging

structures.

Instead, a more streamlined approach known as recursive paging or self-

referencing page tables can be used. Recall again that each of these paging

structures is simply a 4k frame of physical memory. In other words, the only thing

that makes a PT any different from a random block of memory is that its address

is stored in a PDT entry. Similarly, a PDT is defined only by its presence in a

PDPT entry, and a PDPT only by its presence in a PML4T entry. Finally, a

	
 68	

PML4T is differentiated from a random block of memory only by the fact that its

address is stored in the CR3 register. Recursive paging proposes the following

idea: consider what would happen if the base address of the PML4T (the same

one found in the CR3 register) is stored in the PML4T itself. Essentially, this is an

entry in the PML4T that points back to the base of the PML4T. However, a PDPT

is defined only as something whose physical address is stored in a PML4T. Now,

the CR3 target is both a PML4T and a PDPT. Furthermore, a PDT is only

something whose physical address is stored in a PDPT. Since the CR3 target is a

PML4T and a PDPT, and it contains the physical address stored in the CR3 target,

it can be deduced that the CR3 target is a PML4T and a PDPT and a PDT.

Following a similar logic shows that the CR3 target itself can be essentially “cast”

as any of the levels in the page table walk, including a PT and a physical frame.

The capacity to “cast” the CR3 target as any level of the paging walk means that

one can manipulate the virtual address to cause the MMU to “loop” over the self-

referencing pointer during one or more steps of its walk. For example, it is

possible to “cast” the CR3 target as the 4k physical frame itself by setting the

indices in bits 47-39, 38-30, 29-21, and 20-12 Figure 14 ALL to the index of the

self-referencing entry of the PML4T. This allows the use the offset stored in bits

11-0 to write to arbitrary locations in the PML4T. Similarly, it is also possible to

“cast” the CR3 target as the PT by setting the indices in bits 47-39, 38-30, and 29-

21 all to the index of the self-referencing entry of the PML4T. Then, the index in

bits 20-12 (the “Page Table Offset”) can be used to point to a given PDPT, which

	
 69	

will then be indexed by bits 11-0, allowing us to write to arbitrary addresses

within a PDPT.

Figure 14 - X86-64 Virtualization (Intel Manual)

In other words, the self-referencing entry in the top-level paging structure allows

automatic access to every paging structure linked to the currently active CR3

target. The physical address of a PDPT does not need to be stored in a PT entry in

order to write to it. Instead, the MMU can be “tricked” by “looping” through the

self-referencing pointer, so that it treats the PML4T itself (which already stores

the physical addresses of all active PDPTs) as the PT.

	
 70	

This solution is elegant and has many attractive features. In the case examined

before, paging in memory for the user heap, the system can use any arbitrary

frame for the new PT when it is needed. It still needs to write the physical address

of that frame into a PDT entry, but it no longer needs to write the address in a

second place: some other PT entry. Instead, subsequent attempts to write to that

PT will “cast” the PDT as a PT, giving a valid virtual mapping to the new PT.

The stage-one bootloader (figure 8 line 11) has provided the recursive page-table

mapping in six lines of assembly code seen in Figure 15. Effectively, the last of

the 512 entries in the PML4T (lines: 0-3) holds the base address of the PML4T

itself (lines: 4-6).

Figure 15 - Recursive Pointer Page Table Entry Assembly Code

This recursive entry now allows the system to walk any level of the page tables

using the C Macros seen in Appendix C.

3.3.3 Mapping and Populating the Frame Array

First, the frame array initialization function in Appendix D must calculate the

total memory present on the system. This information is provided in the memory

	
 71	

map generated during 16-bit real mode, as described in section 3.2.2 of this

chapter and is accessible thanks to the initial page tables created in section 3.2.3.

The last entry in the memory map can be found by reading the value previously

stored at 0x802. To offset correctly into the memory map stored starting at 0x804,

the value is multiplied by the size of the structure seen in Figure 16.

Figure 16 - C Bios Interrupt 15 Memory Map Structure

By taking the last entry in the memory map and adding the length to the base, it is

possible to calculate how many frames will be needed to store the frame array.

Subsequently, it also possible to calculate how many paging structures (PTs,

PDTs, & PDPTs) will be needed to address the frame array. The sum of these two

amounts is the total number of frames needed to initialize the frame array. This

number is used to find a block from the BIOS provided memory map that is big

enough to hold the needed frames.

The existence of the initial page tables makes it possible to start at the base

address of the found block of memory and increment by 4KB frames to grow

them. This is similar to the initial page tables that were created, except that any

	
 72	

virtual address may be chosen to map the frame array and the recursive pointer is

used to map new tables themselves. The major benefit from the recursive pointer

is that as page tables are exhausted, the next free frame can be used for the next

paging structure. This has the effect of producing a continuous block of virtual

memory for the frame array even if it is not physically contiguous. This is best

illustrated in Figure 17, which shows the completed virtual mapping of an

example frame array and its underlying physical memory.

Figure 17 - Virtual Mapping of the Frame Array via Recursive Pointer

This example frame array covers 4MB of virtual memory from address

0x8000000 to 0x8400000. Circle 1 shows what happens first at the start of the

	
 73	

found physical memory block used to map the frame array. At this point the first

frame is used to create a PT that is added to the initial page tables through the

recursive pointer. Circle 2 shows that this PT then maps the first virtual 2MB of

the frame array. At that point, all of the entries in the PT are exhausted. Thus, the

next free frame is then used in circle 3 for adding another PT to the initial page

tables through the recursive pointer. The PT in circle 4 then maps the final virtual

2MB of the frame array. Thus, the frame array is mapped contiguously in virtual

memory, but not contiguously in physical memory, as the recursive pointer

provides on demand PTs as needed.

Once the frame array is mapped, the initialization routine needs to populate the

array so that it reflects the current state of the system. First, it looks through the

BIOS memory map and uses the information about the blocks to populate the

sections in the array that were reserved by the BIOS. Additionally, the system

needs to walk its own page tables to mark the frames that have already been used

in creating paging structures up to this point. These frames will be marked not

only as taken, but the virtual address corresponding to the frame will be stored in

the appropriate structure in the array. Note that this page table walk, vitally,

includes walking through the recursive entry in the PML4T. This allows for all

frames that are used for the paging structures themselves to be accounted for.

With the frame array mapped and fully populated, the systems memory manager

may use it with the recursive pointer to create new or grow existing page tables.

The creation of new tables is a process management question, which this chapter

	
 74	

does not address, because just as there are multiple options for memory

management, there are an even greater number of options for process

management.

This implementation solves the previous problem of running multiple processes

concurrently, as the frame array and recursive pointer can leverage the inherent

hardware capabilities of the processor to create different sets of page tables for

each process to access memory. The processor cores support this through multiple

CR3 targets. Recall the CR3 tells the memory manager where the start of the page

tables exists. From there the MMU translates the virtual address to physical

memory frames using the tables loaded into the CR3, hiding the implementation

details from the user application developer. The micro-kernel maintains the

pointer to this CR3 target for each process and simply updates the register inside

the core upon process load. SMP is supported as each processor contains a unique

CR3, but the only processer running on the system as of now is the BSP.

3.4 Hypervisor

The hypervisor itself is only run by the BSP after being loaded by the stage-two

bootloader. The hypervisor will run the SMP micro-kernel as a virtual machine

above it as presented in chapter one. Prior to this however, the hypervisor must

configure its interrupt controller as well as find, boot, and configure the APs.

	
 75	

3.4.1 Utilizing the Application Processor Cores

The main driver of an x86 processor and arguably the most important part,

whether it is scheduling, handling unplanned events, or responding to user input,

is the interrupt system [119]. The first of these interrupt controller chips, the Intel

8259 Programmable Interrupt Controller (PIC) was introduced to be compatible

with the Intel 8086 processors [111]. The PIC however was not designed to be

used in a SMP architecture. This coupled with the fact that the PIC used Port-

Mapped Input/Output (PMIO), which is slower than the newer standard of MMIO

meant a new hardware interrupt controller had to be implemented.

The solution introduced by Intel came in the form of two chips. The Intel

82489DX or better known as the Advanced Programmable Interrupt Controller

(APIC) [120], replaced the software interrupt functionality provided by the PIC.

The APIC uses MMIO [5] to provide timing, exception handling, and software

interrupts to the processor. Additionally, the APIC also provides the brand new

feature of Inter-Processor Interrupts (IPIs), where one processor core can send a

software interrupt to another or all processor cores. These IPIs were made

possible by providing each processor core with its own dedicated local APIC.

Thus, enabling each core to handle interrupts independently of any other core.

The other chip, the Intel 82093AA, better known as the Input/Output Advanced

Interrupt Controller (I/O APIC), would become the new interface between

hardware generated interrupts and the processor.

	
 76	

A whole new paradigm of programming the interrupt system was introduced, with

the introduction of the split APIC and I/O APIC using MMIO. This can be seen as

both chips are no longer at a constant location as was with the PMIO based PIC.

However, the added benefits far outweigh this additional burden. The presence of

multiple APICs allows a developer to enumerate the number of cores on the

system while being able to perform SMP related tasks that were simply not

possible with the PIC architecture. The process of finding and using the APIC and

I/O APIC can be distilled into the five steps seen in Figure 18 below

Figure 18 - Process for Booting Application Cores

3.4.2 Finding the Application Processor Cores

The first attempt to introduce APICs, I/O APICs, and multiple processor cores to

the x86 world can be seen in the of how they are found in physical memory. The

heavy lifting of identifying present APICs and I/OAPICs is done by the BIOS

prior to turning the system over to the bootloader. The challenge here becomes

digging through the information stored haphazardly by the BIOS in memory and

the associated standards and documentation that describe how to read this data.

	
 77	

3.4.2.1 Advanced Configuration Power Interface Table

Hewlett-Packard, Intel, Microsoft, Phoenix Technologies, and Toshiba developed

ACPI in 1996 to provide an industry standard for an ever growing collection of

BIOS code, power management, multiprocessor support, and many other system

hardware interfaces [98]. Though the ACPI specification covers all manners of

system hardware, the piece needed for SMP is known as the Multiple APIC

Descriptor Table (MADT). The steps for finding the MADT are outlined in

Figure 19.

Figure 19 - Process for Finding and Parsing ACPI Tables

The first step is to find a pointer stored in memory by the BIOS. As per the ACPI

specification at one of the following two locations:

• Physical memory 0x9FC00 to 0x13FC00

• Physical memory 0xE0000 to 0x1E0000

The search signature has is “RSD PTR ”, which it is important to note the trailing

white space. The C code and the structure of the RSDT to accomplish this search

are given in Figure 20 below.

	
 78	

Figure 20 - Remote System Descriptor Pointer (RSDP) and Search Code

With the RDST found, it is now possible to parse the ACPI tables as a whole. The

ACPI tables start at the RSDT, which is comprised of multiple entries known as

ACPI headers, which itself contains a pointer to sub-tables. These sub-tables are

expanded ACPI headers that may either consist of more tables or a variable

number of data entries. For the case of MADT, it consists of just a variable

number of entries that describe the number of APICs, I/O APICs, and Interrupt

Overrides present on the system. The layout in memory if the ACPI tables looks

as follows.

	
 79	

Figure 21 - ACPI Layout in Memory

From this diagram two challenges of parsing the ACPI tables can be seen. First,

and one reason why a memory manager was built, is that the ACPI tables fall

outside of the initial 2MB of memory mapped by the identity tables created by the

bootloader. Second, from the RSDP at least three pointers must be followed

across memory to eventually find and parse the MADT, which is an ACPI sub

table.

	
 80	

The processes of growing the initial page tables to map the ACPI tables as well as

parsing them are inherently intertwined. The information contained in the RSDP

allows the RSDT to be mapped and the information contained in the RSDT is

used to map the rest of ACPI space. The code contained in Appendix E first maps

the RSDT and then calculates the size of the entirety of the ACPI space. As the

BIOS often will place ACPI tables across page boundaries, the end of the ACPI

tables is calculated to be two 4KB pages past the point of the address calculated

from the RSDT. Thus a while loop is used to identity map the start to end of the

ACPI region.

Once completed, a second while loop iterates over all of the ACPI header entries

contained within the RSDT. For each entry it is determined what table that

specific ACPI header is pointing to. In this case the signature “APIC” represents

the MADT and when found must be parsed to obtain information regarding to the

APICs and I/O APICs on the system.

The MADT consists of an expanded ACPI header, which contains the MMIO

address of the APIC. From there it consists of a variable number of APIC, I/O

APIC, and Interrupt Override entries. Thus, one last while loop parses this data.

The loop starts past the expanded header entry and searches for each sub-entry

type based on the device ID type. When this loop finishes, the needed information

pertaining to enabling SMP on the system has been obtained.

	
 81	

3.4.3 SMP configuration for the Bootstrap Processor

With the BSP and hypervisor armed with the ability to manipulate paging and the

knowledge of APICs and I/O APICs on the system, the hypervisor may now begin

to take the steps to configure its own APIC and the system I/O APIC. The former

is necessary to boot other cores and provide software interrupts while the latter is

necessary to provide hardware interrupts.

3.4.3.1 Enabling the APIC

The APIC is enabled by reading/writing to the APIC MMIO register address that

was found previously in the ACPI tables. Notable APIC register fields and values

that can be written are provided in the Intel Software Developer’s Manual [5].

Notable APIC register fields and values that can be written are provided in

Appendix F. The APIC read/write C functions and code to enable the APIC are as

follows.

	
 82	

Figure 22 - Code to Enable Advanced Programmable Interrupt Controller

The code above assumes the address of the APIC MMIO register address has

been identity mapped by the memory manager. This address is represented by the

value lapicaddr (Lines: 1 & 6), which typically defaults to 0xFEE00000, but

should be compared to the address found either in the MP or ACPI tables. The

lapic_init function enables the APIC to a known good state for handling

interrupts.

The base state is initialized by first writing the Destination Format Register (DFR)

(Line: 12) and Logical Destination Register (LDR) (Line: 13) so that the APIC

delivery mode is set to flat. This means that when sending IPIs between processor

cores, the DFR is first read to see that a flat model is in use by ensuring bits 28

through 21 are set to 1111. Then the local APIC ID programmed into bits 24

	
 83	

through 27 of the LDR is compared on each core to the APIC ID sent in the IPI

via a bitwise AND. If true, that local APIC accepts the IPI. Bits 28 through 31 of

the LDR are used for cluster IPIs where more than one core can be sent the same

IPI. As the IPIs in this chapter are directed to a single core, these bits are set to

zero to signify that cluster IPIs are not in use.

The local interrupt vector registers are then addressed (Lines: 14-17). These

vectors determine if an interrupt is generated by an APIC if certain conditions are

met. As the APIC, which will be used later for scheduling, has not been

calibrated, it is disabled temporarily. The Performance Counter interrupt is set to

non-maskable, which means that if performance counters are in use, they will

generate an interrupt upon overflow. Lastly, both the local Interrupt 0 & 1 pins are

disabled. These pins are used to chain legacy devices to the APIC and are not

needed.

All that is left is to turn the APIC on, so that it starts receiving and generating

software interrupts. This is done by setting the Task Priority Register to 0 (Line:

20) and ensuring spurious interrupts generated by the APIC are routed to an

unused interrupt line (Line: 21).

3.4.3.2 Configuring the APIC Timer

The calibration of the APIC timer is accomplished by counting the number of

times it fires over a known time quantum. This is in done in conjunction with the

	
 84	

Time Stamp Counter (TSC) [121], which counts the number of cycles executed

by a core since it was last reset. The time quantum is based on the frequency of

the processor core. The frequency is determined by three MSRs, which are read to

see if Dynamic Acceleration or Turbo Boost is enabled, and the ratio that the core

is running at [5]. Ratio is referred to by the Intel clock speed definition

“ratio*100MHz”, which means a ratio of 10 results in a processor core running at

1GHz. To find what ratio is used, the platform_info MSR is first checked to see if

bit 31 set to 1. If it is, Dynamic Acceleration is enabled, which means the ratio

can be found in bits 40-44 of the performance_status MSR. If the bit was not set,

then the maximum ratio is found in bits 8-15 of the platform_info MSR. Next, bit

16 in the flex_ratio MSR is read to see if it is set. With a value of 1 indicating that

Turbo Boost is active and the ratio reported by the flex_ratio MSR should be used

to calculate core speed. If the flex_ratio MSR does not report a ratio, then the

default maximum ratio reported by the platform_info MSR should be used to

calculate core speed. If Turbo Boost is not active according to bit 16 in the

flex_ratio MSR, then the maximum ratio reported by the platform_info MSR is

used. The code for this process can be found in Appendix G.

The value determined from the above ratios will be used to determine how fast

process switching occurs and has to be handled delicately. For example, if the

timer operates at the same frequency as the core (freq/Large_Divisor) the system

will never execute user space code as a timer interrupt will occur almost the same

time as the user process starts running. The opposite is also true, if this frequency

	
 85	

is too slow (freq/Small_Divisor), the system will fire timer interrupts at an

extremely slow rate, which will result in one user process hogging all of the

processor cycles. In testing, a divisor of 100 has proven optimal for calibrating the

APIC Timer on a 3.4 GHz i7 Intel processor with Bear’s software load, which

includes a hypervisor, micro-kernel, a number of user processes, and user space

drivers. What this means is if the processor operates at 3.4 billion cycles per

second (3.4 GHz), then a timer will fire roughly once every 34 million cycles.

To perform this calibration, the APIC Time Current Register is set to a very large

number that will be decremented as the timer fires at a periodic interval. Two

initial values are then sampled from both the TSC and APIC Time Current

Register prior to entering a do while loop, which then continues to sample both of

these timers. The loop will run until the TSC reports a difference between the

initial and current TSC value greater than the desired frequency of the APIC

Timer (frequency/100). Once, the loop is exited the difference in count between

initial APIC time value and the last APIC time value can be programmed into the

APIC Timer. The APIC Timer will then generate an interrupt every time this

count reaches zero and the count will begin again after the interrupt is handled by

the either the hypervisor or micro-kernel. This APIC generated interrupt is the

basis for time slice scheduling used by the micro-kernel. The code to perform this

calibration can be seen below.

	
 86	

Figure 23 - C Code to Program APIC Timer

3.4.3.3 Configuring the I/O APIC

With the APIC and its timer calibrated, all that remains before booting the

application processor cores is configuring the I/O APIC. That recall, replaced the

PIC for handling interrupts generated by peripheral devices such as the keyboard

and network card. To handle these interrupts it is an actual piece of hardware on

the motherboard and configurable via MMIO, but has one unique feature. The

MMIO region contains a redirection table for 24 external hardware interrupts. The

entries are 64 bits in length and can be accessed between MMIO bits 0x10 to

	
 87	

0x3F, where the first entry’s low 32-bits are programmed through MMIO register

0x10 and the high 32-bits through MMIO register 0x11 The second entry uses

0x12 for the low and 0x13 for the high. This incremental process repeats for all of

the interrupts supported, which can be found by reading the version register

located at MMIO address 0x01. The layout of a single redirection table entry is

seen below.

Figure 24 - I/O APIC Registry Table Entry

Hardware interrupts 0-23 are handled through this table, which necessitates the

entries to be remapped past the exception interrupts 0-31. The remapping occurs

by writing the new interrupt vector to the interrupt field described by bits 0-7. An

additional benefit of this table can be seen in that the Destination Field described

by bits 56-63, which allows for external interrupts to be routed to any processor

core’s local APIC on the system. Thus, a system could be built that has a single

processor core in charge of handling all of the interrupts generated by a network

card. The general course of action however is to first configure the I/O APIC in a

default state with all hardware interrupts disabled.

	
 88	

Just as with the APIC, Read and Write helper functions do the heavy lifting for

configuring the I/O APIC. This address on most systems generally defaults to

0xFEC00000, but should always be verified with the address reported by the

ACPI tables. Also, as configuration is primarily done via the remapping tables,

two 32-bit high and low registers; a structure of two uint32_t can be used by these

helper functions.

Figure 25 - C I/O APIC and I/O APIC Read Write Helper Functions

Using these helper functions the initial configuration of the I/O APIC can be

streamlined down to 10 lines of code or 12 counting #defines for readability. This

is simplified further by Intel sharing the same default hex values for enable,

disable, assert, etc. between the APIC and I/O APIC as documented in the Intel

Software Developer’s Manual [5].

	
 89	

Figure 26 - C Code to Initialize the I/O APIC

The only register that is read is the Index register, which contains the number of

entries in the redirection table (line 7). This is used by the loop (Lines: 10-13) to

iterate over all the entries, which disables them (Low 32-bit Register - Line: 11)

and then routes them to local APIC zero (High 32-bit Register - Line: 12), which

is the BSP. The I/O APIC is now in a known good state and leaves it to the

hardware driver software to enable its own interrupt lines. The function that

provides this service is below.

Figure 27 - C Code to Enable an I/O APIC Entry

	
 90	

3.4.4 Booting the Application Cores

All of the pieces that support starting and using SMP are now in place. This

leaves the BSP in charge of putting a framework in place for these additional AP

cores to boot and operate. This work is constrained by the fact that all of the AP

cores are placed in a halted state in 16-bit real mode by the BIOS. The BSP

rectifies this by placing a small piece of code in low memory that the application

core will execute to trampoline itself quickly to 64-bit long mode. The trampoline

code is essentially a stripped down version of the stage one bootloader code. As

the AP core need only load the bare minimum registers to make it to 64-bit long

mode. This pseudo code for this can be seen below and the two important lines to

note are 1 and 7 as the bootstrap processor provides these.

Figure 28 – Application Core Trampoline Pseudo Code

The stack (Line: 1) is provided through strategically choosing a location to load

trampoline code. Furthermore, this location can’t impact anything else that

already exists in low memory and is in use. Recall, the initial identity mapped

	
 91	

page tables that address low memory that were created by the stage-one

bootloader. These tables start at 0x1000 and go to 0x4FFF. Also remember, that

the BIOS leaves the AP cores HALTED in 16-bit real mode, where they can only

address physical memory. Thus, the trampoline code must not overwrite any part

of the BSP’s page tables. As well as preventing the AP from performing any

action that could corrupt those tables as it executes the trampoline code. Thus, to

meet these requirements the trampoline code is loaded at 0x6000.

The AP core also has the added benefit of being able to leverage the already

created page tables, which it does by loading the PML4T base 0x1000 into its

CR3 (Line: 7). The concern that jumps to mind with shared page tables is that the

AP core can now modify the same memory addressed by the BSP core, which

could cause the system to crash via non-deterministic behavior. This is addressed

in the process used to start the application core via locking and is best seen by

walking through the code used to start all the AP cores.

	
 92	

Figure 29 - Process to Start Application (AP) Cores

First, note the variables marked volatile (Lines: 0 & 9), this is required due to the

shared page tables between cores, caching, and the compiler. This marking

ensures that there will be no optimization of these two variables that could result

in non-deterministic behavior when the BSP and AP cores access them at the

same time. The BSP then zeros the region of low memory used by the AP cores as

well as loading the trampoline code (Lines: 12 & 14). The BSP then enters the

loop that will boot all of the AP cores on the system (Lines: 18-28). For each AP

core it also creates a new stack that will be used by the AP core once it enters 64-

bit long mode. This is necessary, as two AP cores cannot use the same low

memory stack at the same time. The process of booting the AP cores is iterative as

	
 93	

only one AP core boots at a time. The BSP uses the Intel Universal Startup

Algorithm [99] to start each AP core booting (Line: 24), followed by the BSP

then waiting for the AP core to signal it has finished booting (Lines: 26-27). The

loop on lines 26 & 27 is exited once the AP core has made it to 64-bit long mode

and called the function set_running(), which signals the BSP that is allowed to

boot the next AP core.

The signal to boot and tell the application core where to start executing is

provided by the Intel Universal Startup Algorithm that is documented in the MP

Specification [99]. The algorithm uses special IPIs through the APIC Interrupt

Control Register High (ICRH) and Interrupt Control Register Low (ICRL). The

ICRH and ICRL are both 32 bit registers, which the APIC converts into a 64-bit

long IPI, with the ICRH holding the upper 32-bits and the ICRL holding the lower

32-bits. Bits 56-63 in the ICRH contain the Destination Field that holds the APIC

ID to message. ICRL bits 8-10 are the Delivery Mode type, which tells the

sending APIC if the IPI is a special IPI (RESET, STARTUP, etc) or a software

interrupt. If the IPI is special, the interrupt vector field can be ignored or used to

provide additional information. In the case of the Universal Startup Algorithm, it

is three serialized special IPIs in the format of: INIT, sleep(1000), STARTUP,

sleep(200), STARTUP, sleep(100).

	
 94	

3.4.5 Hypervisor Modifications to Support APIC Access Virtualization

To support the APIC in the virtual machine the hypervisor acts as an abstraction

layer. Meaning the changes made in it are completely unknown to the virtual

machine operating above. This abstraction is built by modifying the hypervisor’s

VMExit handler and its transition and state storage code. These changes boil

down to the five steps seen below.

Figure 30 - Steps to Support SMP Guest Virtual Machines

3.4.5.1 Hypervisor Locking and Processor State Storage

To protect hypervisor-controlled resources, such as the EPT, which are only

modifiable by a single core at a time, locking must be used during the transitions

to the hypervisor from the virtual machine. The method of using a spin-lock to

protect the hypervisor is also used by the micro-kernel for scheduling and is fully

detailed in section 3.5.1. Each core transitioning to the hypervisor grabs the lock

on entry and releases it upon exit. This prevents any core from modifying the

hypervisor state at the same time as another. Thankfully, the spin-lock

performance impact on the hypervisor is minimal as transitions to and from the

	
 95	

hypervisor are minimized as much as possible by virtualization technologies like

EPT and APIC Access Virtualization.

The real difficulty lies in creating storage for each core. Previously, in a single

core implementation, a block of the heap was used to store the guest virtual

machine state for a transition into the hypervisor. This state is then reloaded prior

the guest being resumed. In an SMP hypervisor using this method, every core

would try to write to the same heap location. If this were not changed, then every

core operating inside the virtual machine would have a corrupted state as they all

modify the same block of memory. Thus, each core receives its own block for

local state information. This data is also copied into a permanent virtual machine

storage location, which provides the guest the ability to resume execution on a

different core if need be.

The storage is accessed through a specific core APIC ID (section 3.4.3.1), which

is used to index into the storage array. The layout of the data structure that is

stored locally for each core is seen below.

	
 96	

Figure 31 - C Structure of Hypervisor Core Specific Local Storage

While the rsp and rip are saved on transition, it should be noted that Intel provides

access to both of these values through MSRs, which can be accessed at any point

a core is within the hypervisor. They are stored here as a matter of practice to

ensure all registers are consistently stored at the same time. The initialization of

this structure is accomplished by a “for” loop that runs for the number of cores

present on the system and can be seen in the code below.

	
 97	

Figure 32 - VCPU Structure Initialization

3.4.6 Enabling APIC Access Virtualization

The next step requires the hypervisor to force exits when the virtual machine tries

to boot the AP cores. This is done, by first setting the APIC Access Virtualization

bit 0 to 1 in the Secondary Processor-Based VM-Execution Controls MSR. Next

the hypervisor must allocate one single page of virtual memory for the APIC

Access page to reside on. The physical frame corresponding to this virtual page is

then mapped into the virtual machine’s EPT table at the physical address where

the virtual machine’s APIC’s MMIO register would reside. Thus, when the guest

virtual machine’s cores read or write to its local APIC MMIO space it generates a

VMExit, which the hypervisor can handle.

	
 98	

3.4.6.1 APIC Access Virtualization Exit Handling

When the micro-kernel inside the virtual machine accesses its APIC it now

generates a VMExit that reports exit reason 44 for APIC Access when the VM

Exit Reason MSR is read. The hypervisor now must handle any potential APIC

read or write request generated by the guest virtual machine’s cores. The code that

performs this is located in Appendix H and is explained by the flow chart below.

Figure 33 - Hypervisor APIC VMExit Handling Flow Chart

The first step in handling the exit is to determine if the access was a read or a

write. Reading the VM Qualification MSR does this, where if bit 12 is 1 then the

guest performed a write and if bit 12 is 0 then the guest performed a read. In the

event of a read, the hypervisor determines the APIC field that is being read by

reading bits 0-11 of the VM Qualification MSR. The hypervisor then performs the

	
 99	

read for the guest, placing the read value in a location the guest will use, and then

resumes execution of the guest.

If the guest tried to write to the APIC MMIO register, then it must determine if

the write was a write to ICRL. The VM Qualification MSR bits 0-11 again contain

the field that was being written to. If it wasn’t a write to ICRL, the hypervisor

then performs the write to any other field for the guest and resumes guest

execution. If instead it was a write to the ICRL, then the hypervisor must

determine if the write was an IPI or not.

The write can be determined to be an IPI using the 64-bit long mode function

calling conventions. Recall the lapic_write function (section 3.4.3.1), where the

second variable passed to it is a data variable. In 64-bit long mode, this value is

passed in the rsi register. The hypervisor can then read the rsi register to see what

data is being written to the APIC. If the data matches the INIT or SIPI signal, then

the write is a special IPI. In the case that it doesn’t match, it is a regular IPI,

which is handled by writing the guest requested ICRL data. It is important to note

that the guest, prior to writing to the IRCL, has already written the ICRH, which

was handled by the hypervisor as a normal write and contains the destination of

the IPI.

In the case of an INIT or SIPI signal the hypervisor begins to track the guest to

see if it is using the Intel Universal Startup Algorithm. The first INIT starts a

	
 100	

count to look for the three startup IPIs. The INIT itself is ignored by the

hypervisor and the guest then resumes execution. Next, the hypervisor will grab

the next SIPI in the algorithm, which it will also ignore. Once the receipt of the

second SIPI, the hypervisor will then take action to join another AP to a virtual

machine. This is accomplished by sending an IPI to a waiting AP to inform it

needs to join a guest. The process of joining to the guest is explained in further

detail in the next section. The BSP sends the IPI and waits for the AP by reading

the APIC Delivery bit 12 in its own local APIC ICRL. This bit will remain 1 until

the AP writes zeros to its own local APIC End of Interrupt (EOI) register, which

also zeros the delivery bit on the sending local APIC. The sending core can then

resume guest execution.

3.4.6.2 Joining Cores to a Running Guest

With a system in place to catch and handle APIC accesses, all that is left to

support SMP guests is to join another AP to the running system. As mentioned in

the previous section, a waiting AP in the hypervisor is sent an IPI to start this

process. As IPIs are limited to just the software interrupt vector in terms of data, a

global variable is often used with them to pass data from one core to another. In

this case the data is a pointer to the running virtual machines virtual process

structure, which can be seen below.

	
 101	

Figure 34 - C Structure for Guest Virtual Machine

This structure having already been populated by the hypervisor to start the already

running virtual machine makes joining another core to the same virtual machine a

straightforward endeavor. The virtual machine control registers on the joining

core are loaded with all the same data as the already running guest (VMX

registers, APIC Access Page, EPT pointer, etc), which is performed by the

join_to_vproc function on line 17 in the code below. This function takes the

running guests vproc structure as an argument and mallocs a clone of it for the

core joining the already running guest. Additionally, this core’s interrupts are

	
 102	

disabled and its APIC EOI register is cleared before joining the core to the

running guest using the VMLAUNCH command.

Figure 35 - Function to Join AP to Virtual Machine

3.5 Micro-Kernel SMP Scheduling Considerations

After all the AP cores have joined the micro-kernel virtual machine, scheduling of

user processes can begin. The scheduling system must provide each core its own

idle process, which is run when no other user process is ready to be scheduled.

	
 103	

This section assumes that a system is in place to create new page tables for each

new process, which results in multiple CR3 targets.

3.5.1 Locking and Transitions

The micro-kernel is sacrosanct in its control over memory and must be protected.

Where any processor core may make changes in a process’ user memory without

worry of impact to another core, this is not true for the micro-kernel memory.

Every process has the same micro-kernel mapped into its page tables and if two

cores were to access protected features at the same time, the system could crash.

For example if two cores accessed the micro-kernel heap at the same time, both

cores could be assigned the same block of memory to use. The standard solution

to this problem and the one used by this here is a single spin-lock for the micro-

kernel, which Linux had a form of with the Big Kernel Lock up until the 2.6.39

Linux kernel was released [122].

	
 104	

Figure 36 - C Code to Implement Spin-Locking

The heart of the spin-lock code is the x86 assembly instruction xchgq, which is an

atomic instruction, meaning that it is guaranteed only one processor core will

execute it at a time. In this case of the exchange function, the instruction swaps

either a 1 or a 0 with the value stored in lock_address. If the operation succeeds a

1 is returned and if it fails a 0 is returned. The exchange function is called by

acquire_lock, which will continuously call exchange until a 1 is successfully

swapped in. The exchange function is also called by release_lock, which will

either swap in a 0 or have no effect if a 0 has already been swapped in. These

three functions form the basis of the spin-lock, with acquire_lock called whenever

	
 105	

a core transitions to the micro-kernel and release_lock called whenever a core

exits.

During this transition to the micro-kernel, the core saves the user space registers.

Since this is process specific, these registers are stored inside the process structure

of a user process. These registers are then restored prior to a process resuming

user space execution. The more interesting transition occurs when the micro-

kernel registers are saved when a process transitions inside its kernel space to

another process’ kernel space. In this case the registers are again saved in the

process structure, but the current process’ CR3 target is also saved into the

process structure. Subsequently, the CR3 target of the next process to run is then

written into the core’s CR3. This results in the old processes page tables being

flushed from the TLB and the new processes page tables becoming the MMU’s

active set of tables for translation, which are stored in the TLB as the MMU

traverses them. [30] Furthermore, the system does not crash, because each process

has the same micro-kernel mapped into its page tables. So, while the new process

remains in the same location in micro-kernel virtual memory, it has an entirely

new user virtual memory space.

3.5.2 User & Idle Process Scheduling

The last issue to contend with is what to do when there are fewer user processes to

run than there are cores on the system. In this case the cores not running a process

	
 106	

have to idle. This is achieved by creating a four line idle process with its own

CR3 for each core to run in this scenario.

Figure 37 - Assembly Code to Idle a Core

In the well-known round robin scheduler algorithm [123] the next process in the

scheduling queue is always the next to be run. In a single core system, the

scheduling queue almost always remains full of user processes, but also has been

loaded with a single idle process in case no user processes are available to run. In

a SMP system, the multiple cores can quickly drain the scheduling queue of user

processes and the single idle process to the point where one core may have no

process to run next. For that exact case, the idle process is removed from the

scheduling queue. Instead, each core has its own idle process assigned to it, which

is run when the queue is empty.

3.6 Benchmarks and Analysis

The memory and AIM 9 benchmarks described in chapter 1 were used to measure

performance. In addition to the Dell OptiPlex 9010, a MacBook Pro with 8GB

RAM and a 4-core 3.2GHz Intel i7 processor was also used for benchmarking.

The Dell system ran the Micro-Kernel, Micro-Kernel on Custom Hypervisor,

Fedora with 3.17.4-301 Linux Kernel, and Fedora 3.17.4-301 Linux Kernel on the

	
 107	

Xen 4.4 Hypervisor. The MacBook Pro ran VMware Fusion, a type 2 hypervisor

[124] with an Ubuntu with 2.6.32-38-generic Linux Kernel guest that has 4Gb of

ram and 4 processor cores provided to it from the MacBook Pro.

Table 3 below provides the average number of processor cycles and the time from

twenty runs of the memory and AIM 9 tests described in Chapter 1. The Table

itself is broken into the Cycles it took to complete the memory benchmark, AIM9

benchmark, and total for both. The Table also provides the time in seconds it took

to complete the respective benchmarks and total time for both.

Memory
Cycles

AIM9
Cycles

Total
Cycles

Memory
Time (s)

AIM9
Time

(s)

Total
Test

Time (s)
Micro-Kernel
 2.9574E+11 1.4455E+11 4.4029E+11 86.98 42.52 129.50
Micro-Kernel -
Custom
Hypervisor 2.9956E+11 1.5442E+11 4.5398E+11 88.11 45.42 133.52
Fedora Kernel
 4.7962E+11 1.4368E+11 6.2330E+11 141.06 42.26 183.32
Fedora Kernel -
Xen Hypervisor 4.0746E+11 1.9247E+11 5.9994E+11 119.84 56.61 176.45
Ubuntu Guest -
VMware Fusion 4.6057E+11 0.9390+E11 5.5447E+11 143.92 29.34 173.27

Table 3 - Memory and Processor Benchmarks

Notice that the memory and the recursive paging system described here, on both

the micro-kernel and the micro-kernel executing on the custom hypervisor is

faster than Fedora, Fedora on Xen, and Ubuntu on VMware. Some of this

performance gain can be attributed to the fact that a micro-kernel is a much lighter

weight operating system than a full Linux kernel and thus can create processes at

a faster rate. However, the purpose of benchmark, the creation of 100 processes

	
 108	

with a large number of malloc() and realloc() iterations, is to focus the

performance measurements on virtual memory for user space as a whole. This

provides an additional level of confidence that the performance gains can be

attributed to recursive paging.

Processor performance based on the AIM9 benchmarks had three noteworthy

points of comparison: Although it was expected that the Micro-Kernel would

outperform the larger Fedora Kernel, this is not the case. In fact, both systems

scored roughly the same in terms of the number of cycles and time, with the

Fedora kernel edging out the micro-kernel by ~.251 of a second to complete the

AIM9 benchmark. This can be attributed to the superior scheduling offered by

Fedora, while the micro-kernel performs well due to it simplicity: Both

approaches result in the AIM9 tests running at all times directly on a core.

It is important to notice the impact of a newer processor on the AIM9 benchmark.

The type 2 VMware hypervisor running Ubuntu is running on a slower processor

and with 4 less cores, but that processor was released ~15 months after the

processor shipped with the Dell. The difference a year can make is staggering: the

Ubuntu guest finishes the AIM9 benchmarks almost a full 13 seconds faster than

any configurations running on the Dell.

Finally, the presence of a hypervisor slows performance of the AIM9 benchmark

on all of the systems. The micro-kernel has the smallest impact, which is due to

	
 109	

configuring the hypervisor to operate the guest as close to real time as possible.

Larger hypervisors such as Xen and VMware are designed to manage multiple

guests, which implies some configurations, which are suitable for a micro-kernel

is not suitable for them. This can be seen in the larger performance impact when

comparing Fedora to Fedora on Xen.

3.7 Summary

The	
 implementation	
 of	
 a	
 full	
 SMP	
 system,	
 let	
 alone	
 one	
 that	
 also	
 supports	
 an	

SMP	
 hypervisor	
 requires,	
 a	
 great	
 deal	
 of	
 research	
 into	
 both	
 hardware	
 and	

software	
 architectures.	
 Once	
 implemented	
 though,	
 it	
 provides	
 fine	
 grain	

control	
 of	
 the	
 system	
 through	
 ACPI,	
 the	
 APIC,	
 I/O	
 APIC,	
 Paging,	

Virtualization,	
 and	
 so	
 on.	
 	
 It	
 provides	
 an	
 unparalleled	
 ability	
 to	
 quickly	

redefine	
 the	
 system	
 to	
 any	
 new	
 specification,	
 which	
 for	
 this	
 work	
 is	
 the	
 break	

up	
 and	
 reduction	
 of	
 the	
 micro-­‐kernel	
 into	
 the	
 UVM	
 architecture.	
 	

	
 110	

Chapter 4 – Utility Virtual Machines

To reduce the attack surface of the micro-kernel and replace it with a collection of

UVMs, three key challenges were resolved: isolation of specific functionality

within separate UVMs, communication and synchronization between virtual

machines, and the allocation of virtual machines to processing cores to balance

load across the cores. Isolating functionality is a solved problem, as any unique

UVM service exists in the micro-kernel. Furthermore, being a micro-kernel the

driver components of the system are heavily modularized and have little kernel

specific code other than messaging interfaces. This allows any driver to be

removed from the system without major modification to the micro-kernel itself. In

fact, multiple different testing configurations of the drivers existed prior to

UVMs, to include: networking with NFS, no networking, keyboard only, and so

on. This makes the creation of UVMs a process of choosing one of these

configurations and then compiling out any unneeded functionality.

The task of communication and synchronization between virtual machines

required some outside the box innovation. As the message passing system, which

uses an asynchronous model [33] to implement system calls and inter-process

communication, was initially kernel only. Furthermore, the semantic gap [18]

that protects the hypervisor from virtual machines and virtual machines from each

other is now a factor. As inter-process communication is central to UVMs,

message passing was extended to the hypervisor and new facilities were be built

to cross the gap.

	
 111	

The problem of assigning cores to specific UVMs required a complete redesign of

the original Bear concept of a lightweight hypervisor [25]. The version one

hypervisor was designed to support the operation of a single running guest micro-

kernel. With UVMs the hypervisor had to adapt to support the simultaneous

operation of multiple lightweight task specific guests. Because the concurrent

operation of VM, as well as the use of shared functionality guests, had never been

previously executed, this represented an immense technical leap.

4.1 Building the first UVM

The first task was to build and run a solitary instance of the keyboard/VGA UVM

on bare-metal without the hypervisor. The reasoning being that the keyboard and

VGA drivers in order to run relied on the following assumed small subset of

facilities:

• System Calls – Fork, Exec, Get Process Identifier, User Malloc, Map

Video Ram

• The hardware Interrupt for the Keyboard – 0x21

• User Space Drivers – VGA and Keyboard

To reach this reduced working set, the procedure was largely manual, as build

scripts had to be modified to remove the compilation of unnecessary pieces into

the micro-kernel. Additionally, the micro-kernel itself was modified to remove

obsolete system calls. This leaves the remaining services: fork and exec two

	
 112	

driver processes, the drivers to map their process identifier and Video RAM, and

user space malloc for the standard I/O message passing. Combining these

minimalistic configurations results in the creation of the architecture seen in

Figure 38.

Figure	
 38	
 -­‐	
 Keyboard/VGA	
 UVM	
 Kernel	
 Operation	

This setup only handles keyboard input and then prints it to screen, which all

starts with a key press in (1). This key press triggers the I/O APIC to send the

hardware interrupt 0x21 signal to the micro-kernel. The micro-kernel (2) contains

the code to handle this interrupt and acknowledge that it was received. The

messaging system then sends a generic keyboard interrupt message to the

	
 113	

keyboard driver in (3). The keyboard driver upon receipt interprets what key was

actually pressed and then sends a message to the VGA driver containing the

ASCII [125] character. The VGA driver (4) upon receipt of the message prints the

character to screen.

However, there was one impediment with the messaging system in this

architecture that was not immediately realized until testing. As the asynchronous

model for messaging is in use, both the drivers start up and issue a message

receive, which is a blocking call, meaning both processes are halted until the

messaging system unblocks their execution when they have a message ready for

them. Until they can run, the idle process is executed, which recall just waits for

an interrupt to be triggered. So, upon key press the keyboard and VGA drivers are

unblocked and scheduled due to the hardware interrupt triggering the scheduling

routines of the micro-kernel. After the letter is printed to screen the system hangs

due to a cascading set of circumstances related to scheduling and interrupts,

which is best illustrated in Figure 39.

	
 114	

Figure	
 39	
 -­‐	
 Interrupt	
 Timing	
 in	
 Prototype	
 UVM	

The process of communication between cores works as expected in steps 1

through 7. Messaging and IPIs only break down in steps 8 and 9 when the VGA

driver responds to the now halted keyboard driver. The keyboard driver fails to

reschedule after receipt of the IPI, because IPIs are software interrupts, which will

not be received if the hardware interrupt flag is set. The hardware interrupt flag is

still set on core 0, because it can only be cleared after the acknowledgement

receipt, which tells the keyboard it can now receive subsequent key presses. This

prevents out of order receipt or loss of key press by the keyboard driver. Thus,

with the response IPI never being received, the scheduler is never run and both

cores are stuck idling.

Thankfully, the solution lay in the adjustment of the initial assumptions to include

the timer interrupt, which itself is a hardware interrupt and cannot be overridden

like a software interrupt. Initially, it was absent, as the goal was to reduce the

	
 115	

overhead of unneeded interrupt context switches when neither the VGA or

keyboard drivers were in use. Unfortunately, the need to break out of the idle

process persists, which requires it to remain. Upon reintroduction of the timer

interrupt, the system performs as expected and multiple key presses can be

handled with no hangs.

4.2 Extending Message Passing to the Hypervisor

Next	
 the	
 UVM	
 for	
 Keyboard	
 and	
 VGA	
 had	
 to	
 be	
 run	
 on	
 top	
 of	
 the	
 hypervisor	

and	
 pass	
 messages	
 between	
 drivers	
 through	
 the	
 hypervisor.	
 Running	
 a	
 single	

UVM	
 on	
 the	
 hypervisor	
 is	
 no	
 different	
 than	
 running	
 a	
 single	
 micro-­‐kernel	

guest	
 on	
 the	
 hypervisor.	
 As	
 such,	
 discussion	
 of	
 this	
 is	
 omitted	
 in	
 this	
 thesis,	

but	
 a	
 detailed	
 description	
 is	
 available	
 by	
 Kanter	
 [126].	
 The	
 main	
 technical	

tasks	
 covered	
 here	
 are	
 the	
 extension	
 of	
 the	
 messaging	
 system	
 and	
 crossing	

the	
 semantic	
 gap	
 to	
 interpret	
 the	
 messages.	
 This	
 can	
 be	
 visualized	
 by	

thinking	
 of	
 Figure	
 38	
 above	
 as	
 the	
 top	
 orange	
 component	
 of	
 the	
 larger	

system	
 in	
 Figure	
 40	
 below.	

	

	
 116	

	

Figure	
 40	
 -­‐	
 Keyboard/VGA	
 UVM	
 Running	
 on	
 the	
 Hypervisor	

In	
 this	
 new	
 architecture	
 the	
 I/O	
 APIC	
 (1)	
 uses	
 interrupt	
 passthrough	
 (2)	
 [5]	

to	
 deliver	
 the	
 hardware	
 interrupt	
 directly	
 to	
 the	
 running	
 keyboard/VGA	

UVM.	
 Consequently,	
 no	
 additional	
 handling	
 overhead	
 has	
 to	
 be	
 added	
 to	
 the	

hypervisor	
 for	
 interrupts.	
 The	
 extensive	
 changes	
 come	
 from	
 coupling	
 the	

micro-kernel	
 messaging	
 system	
 to	
 the	
 hypervisor	
 messaging	
 system	
 through	

VMCALLs	
 (3)	
 and	
 the	
 passing	
 of	
 messages	
 between	
 cores	
 (4)	
 via	
 IPIs.	

Development	
 of	
 this	
 initial	
 prototype	
 pegged	
 the	
 keyboard	
 process	
 to	
 core	
 0	

and	
 the	
 VGA	
 process	
 to	
 core	
 1	
 with	
 all	
 messages	
 between	
 them	
 routed	

through	
 the	
 hypervisor.	

	

	
 117	

Step	
 (3)	
 has	
 two	
 components,	
 which	
 are	
 the	
 new	
 hypervisor	
 messaging	

queue	
 and	
 the	
 vmexit	
 handler	
 that	
 is	
 used	
 to	
 cross	
 the	
 semantic	
 gap	
 to	

interpret	
 messages.	
 The	
 queue	
 code	
 can	
 be	
 seen	
 in	
 Appendix	
 I	
 and	
 is	

comprised	
 of	
 four	
 functions:	
 	

• init_util_msg_queue(void)	
 opens	
 the	
 queue	
 and	
 is	
 called	
 during	
 the	

startup	
 of	
 the	
 hypervisor.	
 	

• add_util_msg(Util_msg_t*	
 msg)	
 adds	
 messages	
 to	
 the	
 queue.	

• remove_util_msg(void)	
 removes	
 messages	
 from	
 the	
 queue	
 that	
 are	

meant	
 for	
 the	
 core	
 it	
 is	
 called	
 on.	

• static	
 int	
 core_msg_cmp(void*	
 msg,	
 const	
 void*	
 core_number)	
 is	
 the	

helper	
 function	
 called	
 by	
 remove_util_msg(void)	
 to	
 find	
 messages	

assigned	
 to	
 a	
 specific	
 core.	

	

The	
 hook	
 into	
 the	
 hypervisor	
 for	
 inter-­‐VM	
 message	
 sends	
 and	
 receives	
 is	

provided	
 by	
 a	
 VMCALL,	
 which	
 is	
 a	
 special	
 virtualization	
 instruction	
 that	

forces	
 a	
 guest	
 to	
 exit	
 to	
 the	
 hypervisor	
 [5].	
 To	
 fully	
 understand	
 what	
 is	

happening	
 in	
 step	
 (3)	
 and	
 how	
 it	
 relates	
 to	
 IPIs	
 in	
 (4),	
 it	
 is	
 best	
 to	
 go	
 through	

the	
 process	
 of	
 the	
 keyboard	
 driver	
 sending	
 a	
 message	
 to	
 the	
 VGA	
 driver.	
 	

	

The	
 message	
 send	
 with	
 the	
 ASCII	
 character	
 to	
 be	
 printed	
 still	
 goes	
 into	
 the	

standard	
 micro-kernel	
 messaging	
 system.	
 However,	
 before	
 calling	
 a	
 normal	

message	
 send	
 it	
 instead	
 calls	
 the	
 hypv_msg_send	
 function	
 seen	
 in	
 the	
 Figure	

41.	

	
 118	

	

	

Figure	
 41	
 -­‐	
 kmsg_hypv_send	
 code	

This	
 function	
 is	
 a	
 wrapper	
 for	
 kmsg_vcall	
 on	
 line	
 9,	
 which	
 takes	
 the	
 following	

arguments:	

• 45	
 –	
 Specifies	
 this	
 is	
 a	
 message	
 send	
 for	
 the	
 VMCALL	
 vmexit	
 handler.	

• virt2phys(mp-­‐>buf)	
 –	
 The	
 guest	
 physical	
 address	
 of	
 the	
 message	

buffer.	

• (void*)virt2phys((void*)(mp))	
 –	
 The	
 guest	
 physical	
 address	
 of	
 the	

message	
 header.	

• (void*)mp	
 –	
 The	
 guest	
 virtual	
 address	
 of	
 the	
 message.	

	

After	
 the	
 vmcall	
 instruction	
 on	
 line	
 3	
 is	
 issued,	
 core	
 0,	
 which	
 is	
 running	
 the	

keyboard	
 driver	
 is	
 dropped	
 into	
 the	
 hypervisor.	
 The	
 arguments	
 passed	
 to	

kmsg_vmcall	
 are	
 accessed	
 by	
 the	
 hypervisor	
 through	
 the	
 guest	
 state	
 variables	

according	
 to	
 x86-­‐64	
 calling	
 conventions:	
 45	
 in	
 rdi,	
 virt2phys(mp-­‐>buf)	
 in	
 rsi,	

(void*)virt2phys((void*)(mp))	
 	
 in	
 rdx,	
 and	
 (void*)mp	
 in	
 rcx.	
 The	
 hypervisor	

	
 119	

then	
 uses	
 these	
 variables	
 to	
 cross	
 the	
 semantic	
 gap	
 and	
 decipher	
 the	
 message	

that	
 is	
 being	
 sent.	
 	

	

Those	
 four	
 variables	
 are	
 enough	
 to	
 cross	
 the	
 gap,	
 because	
 they	
 provide	
 all	

the	
 information	
 as	
 to	
 where	
 the	
 message	
 is	
 located	
 in	
 host	
 physical	
 memory.	

Thus,	
 the	
 hypervisor	
 need	
 only	
 to	
 map	
 the	
 host	
 physical	
 address	
 relating	
 to	

the	
 guest	
 physical	
 address	
 into	
 its	
 virtual	
 memory	
 to	
 obtain	
 the	
 message,	

which	
 is	
 accomplished	
 by	
 the	
 code	
 in	
 Figure	
 42.	

	

	

Figure	
 42	
 -­‐	
 Crossing	
 the	
 Semantic	
 Gap	

Any	
 unassigned	
 virtual	
 address	
 has	
 the	
 offset	
 of	
 the	
 guest	
 virtual	
 address	

added	
 to	
 it	
 (line	
 0).	
 This	
 is	
 because	
 messages	
 are	
 stored	
 in	
 the	
 kernel	
 heap	

and	
 are	
 not	
 paged	
 aligned.	
 Then	
 the	
 EPT	
 is	
 traversed	
 to	
 find	
 the	
 host	
 physical	

address	
 (line	
 2)	
 that	
 relates	
 to	
 the	
 guest	
 physical	
 address.	
 This	
 host	
 physical	

address	
 is	
 then	
 attached	
 to	
 the	
 unassigned	
 virtual	
 address	
 (lines	
 4	
 &	
 5).	
 Then	

and	
 only	
 then	
 can	
 the	
 hypervisor	
 access	
 the	
 guest’s	
 message	
 (line	
 7).	

However,	
 This	
 process	
 has	
 to	
 be	
 repeated	
 for	
 every	
 pointer	
 contained	
 in	
 a	

message,	
 which	
 is	
 the	
 reason	
 the	
 message	
 buffer	
 guest	
 physical	
 address	
 is	

	
 120	

also	
 passed	
 to	
 the	
 hypv_msg_send.	
 Note	
 the	
 virtual	
 address	
 of	
 the	
 guest	

message	
 buffer	
 is	
 not	
 needed	
 as	
 that	
 is	
 contained	
 in	
 the	
 message	
 header.	

	

Once,	
 the	
 message	
 is	
 fully	
 deciphered	
 it	
 is	
 stored	
 in	
 the	
 hypervisor	
 messaging	

queue	
 and	
 tagged	
 with	
 the	
 core	
 it	
 is	
 destined	
 for,	
 which	
 in	
 this	
 case	
 is	
 core	
 2.	

Core	
 2	
 is	
 notified	
 by	
 core	
 0	
 that	
 it	
 has	
 a	
 message	
 through	
 the	
 software	
 IPI	

0x8F.	
 The	
 IPI	
 forces	
 Core	
 2	
 to	
 execute	
 the	
 interrupt	
 handler	
 code	
 in	
 Figure	
 43	

for	
 a	
 hypervisor	
 message	
 receive	
 inside	
 the	
 micro-­‐kernel	
 of	
 the	
 UVM.	
 	

	

Figure	
 43	
 -­‐	
 UVM	
 Message	
 Receive	
 Interrupt	
 Handler	

The	
 handler	
 sets	
 up	
 an	
 empty	
 message	
 that	
 will	
 be	
 filled	
 in	
 by	
 the	
 hypervisor	

(lines	
 1,	
 3,	
 &	
 4).	
 The	
 uvm_msg_loc	
 variable	
 is	
 a	
 block	
 of	
 memory	
 allocated	

inside	
 of	
 a	
 UVM	
 for	
 message	
 transfers.	
 As	
 it	
 is	
 impossible	
 to	
 know	
 how	
 large	

the	
 message	
 buffer	
 will	
 be,	
 two	
 contiguous	
 4KB	
 pages	
 are	
 used.	
 Then	
 the	

handler	
 issues	
 a	
 VMCALL	
 (line	
 6	
 &	
 7),	
 which	
 is	
 almost	
 identical	
 to	
 the	

VMCALL	
 in	
 Figure	
 43,	
 except	
 it	
 passes	
 46	
 instead	
 of	
 45.	
 This	
 tells	
 the	

	
 121	

hypervisor	
 to	
 treat	
 it	
 as	
 a	
 message	
 receive	
 in	
 the	
 vmexit	
 handler.	
 Core	
 2	
 now	

in	
 the	
 exit	
 handler	
 again	
 performs	
 all	
 the	
 same	
 steps	
 to	
 cross	
 the	
 semantic	

gap	
 as	
 were	
 done	
 in	
 Figure	
 42,	
 but	
 with	
 the	
 addition	
 of	
 copying	
 the	
 previous	

message	
 send	
 into	
 the	
 empty	
 translated	
 message	
 variable.	
 The	
 hypervisor	

returns	
 core	
 2	
 to	
 normal	
 execution	
 in	
 the	
 UVM	
 it	
 will	
 issue	
 a	
 local	
 message	

send	
 (line	
 9).	
 The	
 VGA	
 driver	
 will	
 then	
 receive	
 the	
 message	
 to	
 print	
 a	

character	
 from	
 the	
 keyboard	
 driver.	
 This	
 whole	
 process	
 then	
 repeats	
 again	
 in	

reverse	
 when	
 the	
 VGA	
 driver	
 sends	
 the	
 acknowledgement	
 receipt	
 back	
 to	
 the	

keyboard	
 driver.	

	

4.3 Pairing Two UVMs Together

With	
 the	
 keyboard/VGA	
 UVM	
 in	
 place,	
 it	
 was	
 time	
 to	
 pair	
 it	
 with	
 the	
 Shell	

UVM,	
 which	
 contains	
 all	
 user	
 space	
 processes.	
 However,	
 to	
 do	
 this,	
 support	

for	
 concurrent	
 operations	
 of	
 two	
 virtual	
 machines	
 was	
 needed.	
 To	
 speed	
 this	

work,	
 the	
 decision	
 was	
 made	
 to	
 statically	
 assign	
 cores	
 to	
 specific	
 UVMs.	
 In	

this	
 way	
 the	
 keyboard/VGA	
 UVM	
 could	
 be	
 assigned	
 core	
 0	
 and	
 the	
 Shell	
 UVM	

could	
 be	
 assigned	
 the	
 remaining	
 cores	
 1-­‐7.	
 This	
 also	
 allows	
 for	
 the	
 UVMs	
 to	

chain	
 load	
 with	
 the	
 next	
 loading	
 after	
 the	
 preceding	
 one	
 has	
 finished	
 its	

micro-­‐kernel	
 initialization.	

	

Prior	
 to	
 either	
 UVM	
 starting,	
 two	
 vprocs	
 are	
 created	
 that	
 each	
 has	
 their	
 own	

independent	
 virtualization	
 control	
 structures.	
 The	
 only	
 actual	
 difference	
 is	

the	
 tailored	
 code	
 for	
 the	
 jobs	
 they	
 support.	
 The	
 keyboard/VGA	
 UVM	
 starts	
 on	

	
 122	

core	
 0	
 first	
 and	
 has	
 one	
 additional	
 line	
 added	
 to	
 the	
 end	
 of	
 its	
 kernel	

initialization,	
 “kvmcall(0xA,2,0);”,	
 which	
 is	
 used	
 to	
 chain	
 load	
 the	
 next	
 UVM.	

This	
 VMCALL	
 has	
 core	
 0	
 execute	
 the	
 hypervisor	
 code	
 in	
 Figure	
 44.	

	

	

Figure	
 44	
 -­‐	
 Launch	
 Second	
 UVM	
 Code	

The	
 majority	
 of	
 the	
 code	
 is	
 error	
 handling	
 (lines	
 3-­‐9	
 &	
 17-­‐20),	
 as	
 there	
 are	
 a	

few	
 cases	
 that	
 must	
 be	
 accounted	
 for.	
 First,	
 no	
 UVM	
 can	
 be	
 assigned	
 virtual	

process	
 ID	
 0	
 as	
 that	
 is	
 reserved	
 per	
 Intel	
 instruction	
 [5].	
 Also,	
 the	
 virtual	

process	
 ID	
 given	
 from	
 the	
 VMCALL	
 cannot	
 be	
 higher	
 than	
 the	
 actual	
 number	

of	
 UVMs	
 present.	
 Avoiding	
 this,	
 the	
 number	
 two	
 is	
 passed,	
 which	
 represents	

the	
 virtual	
 process	
 ID	
 for	
 the	
 shell	
 UVM.	
 From	
 there	
 the	
 vproc	
 is	
 found	
 (line	

	
 123	

11)	
 and	
 then	
 an	
 IPI	
 is	
 sent	
 to	
 the	
 core	
 2	
 (line	
 13),	
 which	
 starts	
 the	
 Shell	
 UVM.	

Note	
 core	
 2	
 and	
 not	
 core	
 1	
 is	
 started	
 first	
 as	
 this	
 conforms	
 to	
 the	
 start	
 order	

provided	
 by	
 ACPI	
 [98].	

	

Once	
 both	
 UVMs	
 are	
 up	
 and	
 running	
 they	
 immediately	
 start	
 communicating	

with	
 each	
 other.	
 The	
 keyboard	
 driver	
 sends	
 messages	
 to	
 the	
 Shell	
 when	
 the	

enter	
 key	
 is	
 pressed.	
 The	
 VGA	
 driver	
 receives	
 messages	
 locally	
 from	
 the	

keyboard	
 and	
 between	
 VMs	
 from	
 standard	
 output	
 such	
 as	
 printf().	
 The	

complete	
 UVM	
 architecture	
 can	
 be	
 seen	
 in	
 the	
 Figure	
 45.	

	

	

Figure	
 45	
 -­‐	
 Complete	
 UVM	
 Architecture	

	
 124	

Now	
 the	
 true	
 security	
 benefits	
 can	
 be	
 clearly	
 seen	
 through	
 the	
 dividing	
 lines	

in	
 this	
 diagram.	
 The	
 hardware	
 boundary	
 (1)	
 results	
 in	
 only	
 the	
 hypervisor	

having	
 access	
 to	
 the	
 hardware.	
 The	
 semantic	
 gap	
 (2)	
 enforced	
 by	
 the	
 EPT	

further	
 abstracts	
 the	
 hardware	
 from	
 the	
 UVMs,	
 but	
 also	
 protects	
 the	

hypervisor	
 from	
 malicious	
 guests.	
 The	
 last	
 abstraction	
 is	
 the	
 kernel	
 and	
 user	

boundary	
 (3),	
 which	
 isolates	
 the	
 UVM	
 micro-­‐kernels	
 from	
 their	
 user	

processes	
 or	
 device	
 drivers.	
 The	
 UVMs	
 themselves	
 are	
 protected	
 from	
 each	

other	
 through	
 virtualization	
 (4)	
 and	
 all	
 communications	
 between	
 them	
 is	

protected	
 through	
 first	
 their	
 messaging	
 system	
 and	
 then	
 the	
 hypervisor	

messaging	
 system.	
 Furthermore,	
 these	
 inter-­‐UVM	
 communication	
 channels	

are	
 strictly	
 enforced	
 by	
 the	
 hypervisor	
 where	
 anomalous	
 sends	
 between	

UVMs	
 are	
 disallowed.	
 For	
 example,	
 if	
 the	
 keyboard	
 driver	
 attempted	
 to	

communicate	
 with	
 any	
 other	
 process	
 than	
 the	
 shell	
 the	
 hypervisor	
 would	

halt	
 the	
 execution	
 of	
 the	
 Keyboard/VGA	
 UVM.	

4.4 Benchmarking and Analysis

Again the memory and Aim 9 benchmarks were used and the results can be seen

in Table 4.

	
 125	

	

Memory	

Cycles	
 AIM9	
 Cycles	
 Total	
 Cycles	

Memory	

Time	
 (s)	

AIM9	

Time	

(s)	

Total	

Time	

(s)	

Bear	
 Micro-­‐
Kernel	
 	
 2.9574E+11	
 1.4455E+11	
 4.4029E+11	
 86.98	
 42.52	
 129.45	

Bear	
 Micro-­‐
Kernel	
 &	

Hypervisor	
 	
 	
 2.9956E+11	
 1.5442E+11	
 4.5398E+11	
 88.11	
 45.42	
 133.52	

Keyboard/	

VGA	
 UVM	

(no	
 network)	

3.0288E+11	

	

1.4533E+11	

	

4.4821E+11	

	

89.08	

	

42.74	

	

131.83	

	

 Table 4 - Keyboard/VGA UVM Benchmarks

The performance of the hypervisor messaging system and the UVMs was better

than expected. As each inter-UVM message adds two VMCALLs (send & receive)

it was predicted that the system would slow a significant amount, because more

time would be spent in the hypervisor and crossing the semantic gap can be

expensive [87]. However, the UVMs performed about equal to the micro-kernel

with hypervisor. Being about ~1 second slower in memory and ~3 seconds faster

in AIM9, which results in ~2 second decrease in total test time.

The memory performance was within margin of 1.1% and cannot definitively be

attributed to UVM messaging, less cores for the multiple process test, or just

margin of error. However, the AIM9 performance was 6.1% greater and can be

attributed to the UVM architecture, which completely offloads printing to a

separate VM. This free the Shell UVM to capitalize those few extra cycles to

finish the AIM9 test faster.

As for attack surface and the mitigation of zero-day threats it is important to note

all the differing attack surfaces in the UVM architecture. First, the keyboard/VGA

	
 126	

UVM micro-kernel has shrunk from 2,904 lines of code to 2,072, which is a

decrease of 33.4%. Furthermore, the lines of code contained in user space are

1,210 lines versus the full micro-kernels user space of 50,592, which is a

difference of 190.7%. The beauty of the UVM architecture is that much of the

missing user components are provided in a separate Shell UVM. The Shell UVM

saw its micro-kernel decrease to 2,311 lines, which is a reduction of 7.1%. The

Shell UVM’s user space shrank to a size of 2,600 lines for a difference of 180.4%.

However, these large user space reductions primarily come from eliminating the

network functionality from these UVMs, as it comprises 46,612 lines of user

space code. The next chapter deals with returning this network functionality to the

architecture through an additional network UVM. Lastly, the hypervisor saw an

increase from 2,489 lines to 2,654 to support the UVM messaging system and

simultaneous UVM operation. This was an increase of 6.4%, but these are also the

hardest to reach for an attacker as they are protected by the semantic gap.

4.5 Summary

Besides	
 some	
 initial	
 difficulty,	
 the	
 hypervisor	
 messaging	
 system	
 and	
 inter-­‐

UVM	
 communication	
 component	
 were	
 completed	
 to	
 form	
 the	
 basis	
 of	
 the	

UVM	
 architecture.	
 The	
 hypervisor	
 now	
 contains	
 much	
 of	
 the	
 same	
 MPI	
 based	

messaging	
 system	
 that	
 was	
 originally	
 built	
 for	
 the	
 micro-­‐kernel.	
 The	

exceptions	
 being	
 that	
 messages	
 are	
 routed	
 based	
 on	
 core	
 ID	
 instead	
 of	

process	
 ID,	
 and	
 that	
 only	
 designated	
 processes	
 can	
 initiate	
 messages	

between	
 UVMs.	
 This	
 provides	
 an	
 added	
 layer	
 of	
 security	
 by	
 enforcing	

	
 127	

communication	
 as	
 one-­‐way	
 channels.	
 More	
 importantly,	
 it	
 also	
 proves	
 that	

hypervisor	
 messaging	
 is	
 possible	
 with	
 current	
 hardware,	
 which	
 was	
 an	
 early-­‐

identified	
 challenge.	

	

The	
 inter-­‐UVM	
 communication	
 was	
 effectively	
 built	
 through	
 the	
 coupling	
 of	

IPIs	
 with	
 VMCALLs,	
 thus,	
 providing	
 an	
 effective	
 means	
 for	
 one	
 VM	
 to	

interrupt	
 another	
 when	
 it	
 is	
 ready	
 to	
 receive	
 a	
 message	
 that	
 it	
 is	
 being	
 sent.	

Notably,	
 this	
 method,	
 while	
 increasing	
 time	
 spent	
 in	
 the	
 hypervisor,	
 actually	

increased	
 performance	
 of	
 the	
 overall	
 system.	
 Allowing	
 for	
 more	
 tasks	
 to	

execute	
 simultaneously	
 through	
 the	
 introduction	
 of	
 multiple	
 lightweight	

UVMs.	
 This	
 current	
 architecture	
 precludes	
 the	
 largest	
 portion	
 of	
 the	
 system,	

which	
 is	
 the	
 networking	
 component.	
 The	
 lack	
 of	
 a	
 complete	
 system	
 means	

the	
 question	
 of	
 it	
 being	
 possibly	
 to	
 fully	
 fragment	
 a	
 kernel	
 has	
 not	
 been	

completely	
 answered.	

	

In	
 terms	
 of	
 security	
 advancements,	
 the	
 initial	
 architecture	
 is	
 very	
 promising.	

The	
 kernel	
 and	
 user	
 code	
 bases	
 have	
 been	
 significantly	
 shrunk,	
 which	

minimizes	
 the	
 attack	
 surface	
 and	
 increases	
 attacker	
 workload	
 by	
 reducing	

the	
 number	
 of	
 gadgets	
 available	
 for	
 ROP	
 attacks.	
 	
 Attackers	
 are	
 further	

hindered	
 through	
 sandboxing	
 provided	
 by	
 the	
 semantic	
 gap	
 through	
 EPT,	

which	
 is	
 harder	
 to	
 cross	
 as	
 the	
 code	
 base	
 shrinks.	

	
 128	

Chapter 5 – A Further Abstraction: The Network UVM

As mentioned earlier the networking subsystem, which consists of the e1000

driver and Network File Sharing Daemon (NFSD) has not been added. These are

the largest and most complex pieces of the operating system as they interface with

everything from hardware to user space libraries. Separating them from the

system as a whole required more architectural engineering and introspection than

that of the previously implemented keyboard/VGA UVM.

The primary service provided by the networking component is to load binaries

from a trusted store that resides within the cloud [28]. The transfer occurs in a

newly forked process’ user space execve system call prior to a program running.

The code that performs this uses four message types to interface with the NFSD:

Stat – checks if the file is there; Open – creates a network path to the file; Seek –

moves the file system pointer to the start of the file; and Read – copies the file to a

local object. Once the binary is transferred, the execve code sends a message to

the micro-kernel to copy the user space binary and then load it into memory for it

to be executed. Therefore, the hypervisor must pass these same NFSD messages

back and forth between any network UVM and the already existing shell UVM.

This is complicated in by the Read interface, which is actually an Application

Programming Interface (API) [127] wrapper that hides multiple low level data

read messages. While the e1000 card supports data transfers of 2KB or 2048

bytes, the NFSD only allows for a max read per request of 1KB or 1024 bytes. To

	
 129	

ensure a file is read fully, multiple read messages are sent in a do while loop that

continues until the entire file has been copied locally.

Under these constraints, 210 read messages would be needed to load a file like the

shell, which is 213,895 bytes in size. According to the UVM architecture

presented in chapter 4 this would entail 418 VMCALLs for the read operation and

this excludes any additional messages needed for Stat, Open, and Seek. Thus, a

different approach was chosen as the overhead for the inter-VM messages and

multiple memory copies throughout the hypervisor would be immense.

5.1 Network Utility Virtual Machine Helper Daemon (NUVMHD)

One option would have been to rewrite the NFSD and its interfaces to implement

the network UVM. However, potentially breaking an interface to implement the

UVM architecture goes against the adopted principle of modularity [25] and

hinders future portability. Instead, the solution chosen entails the encapsulation of

the API into the NUVMHD process seen in Figure 46, which was first

implemented on top of the micro-kernel without the hypervisor.

	
 130	

Figure 46 Encapsulation of NFSD into NUVMHD

The significance of this is to picture these processes themselves contained within

the network UVM and the black box being the message interface into the UVM.

Where by going from (1) to (2) the interface complexity is reduced by a factor of

four and Stat, Open, Seek, and Read messages are all bottled into two messages.

The send and reply code itself is 8 lines, which can be seen in Figure 47.

Figure 47 - NUVMHD Send and Reply Structure

To obtain a binary from the NUVMHD another process sends the string (line 2) of

the binary it is trying to download. Once received, all of the same steps that were

	
 131	

taken in the user portion of execve are followed, which ends in the binary being

loaded into the NUVMHD user virtual memory. The catch here is the process that

requested the binary does not have access to the loaded binary, because every user

process has its own unique virtual address space due to multiple CR3 targets. This

is alleviated by the NUVMHD transferring the binary to the shared micro-kernel

through a system call. This transfer was originally performed by execve so the elf

loader could load the process, which means no new work is done as it has been

relocated from execve to the NUVMHD. Upon completion, the reply message that

is sent back to the requesting process contains the address (line 8) of the now

loaded binary.

5.2 Implementing the Network UVM

The creation of the Network UVM followed the same manual process that was

involved in building the keyboard/VGA and shell UVMs. The newly created VM

was tailored to include the e1000 driver, the NFSD, and the NUVMHD. It was

also modified to chain load the next UVM after it had been initialized.

There still remained one impediment to it being fully functional though, which

again related to the binary. The NUVMHD interface between VMs worked as

intended in that the shell UVM would request a binary, the network UVM would

load the binary in its own context, and then it would reply with the address the

binary had been loaded at. The shell UVM, if it attempts to access this address

would crash, because the binary is still stuck within the network UVM. The

	
 132	

reason for this is the hypervisor only transfers the message header and the

message buffer, which between the two contains only a pointer to the binary

(figure 2, line 8).

To resolve this issue further introspection is needed to transfer the binary between

the VMs. This introspection is enabled by adding the guest physical address of the

binary to the fields of the kvmcall function, which allows the host physical

address of the binary to be found in the EPT. Recall, the virtual address for

alignment and size of the binary are already provided in the reply buffer. All of

this information is then used to copy the binary from the guest into a malloced

space inside the hypervisor. The pointer to the binary is then stored in the

message it loads in its messaging queue in place of the address that was provided

from the network UVM. The hypervisor then notifies the shell UVM through IPI

that the reply message is ready for it.

The shell UVM of course knows nothing about the binary and the hypervisor has

no way of knowing where to copy the binary into the shell UVM. To work around

this, the shell UVM has a block of blank memory that it zeros and passes as the

address in the reply message that the hypervisor will use. Again, this address must

have its guest physical address passed in the kvmcall function in order for the

hypervisor to use it. To ensure there is enough space for the binary, a block that is

larger than known binary sizes is used.

	
 133	

Once the shell UVM core is inside the hypervisor it then pulls the message from

the queue. It introspects the address provided by the shell UVM so as to map and

then copy the binary to that memory. The shell UVM then resumes function with

the same virtual address, but with the actual binary located behind it. More

importantly this eliminates the need for the system call in the shell UVM, as the

hypervisor copies the binary directly into the micro-kernel. The system call must

remain in the network UVM as VMCALLs can only be executed from the micro-

kernel and the binary is initially loaded in user space.

5.3 Benchmarking and Analysis

Prior to testing, it was believed that the presence of the Network coupled with the

network UVM would cause a slow down, because of it size and scope. However,

this was not the case as seen in the test results of the memory and AIM9 tests in

Table 5:

Memory
Cycles

AIM9
Cycles Total Cycles

Memory
Time (s)

AIM9
Time (s)

Total
Time (s)

Bear Micro-
Kernel 2.9574E+11 1.4455E+11 4.4029E+11 86.98 42.52 129.45
Bear Micro-
Kernel &
Hypervisor 2.9956E+11 1.5442E+11 4.5398E+11 88.11 45.42 133.52
Keyboard
/VGA UVM
(no network)

3.0288E+11

1.4533E+11

4.4821E+11

89.08

42.74

131.83

Network
UVM 3.0362E+11 1.4682E+11 4.5043E+11 89.30 43.18 132.48

Table 5 - Network UVM Benchmarks

	

Instead,	
 the	
 network	
 UVM	
 performed	
 on	
 par	
 with	
 the	
 keyboard/VGA	
 UVM	

configuration.	
 The	
 only	
 noticeable	
 effect	
 was	
 a	
 slight	
 slow	
 down	
 of	
 the	
 AIM9	

	
 134	

tests,	
 which	
 is	
 most	
 likely	
 attributed	
 to	
 a	
 hypervisor	
 bottleneck.	
 As	
 the	
 core	

i7	
 processer	
 that	
 is	
 in	
 use	
 does	
 not	
 support	
 end	
 of	
 interrupt	
 virtualization,	

which	
 requires	
 every	
 core	
 to	
 drop	
 into	
 the	
 hypervisor	
 to	
 clear	
 the	
 APIC	
 flag	

that	
 corresponds	
 to	
 it	
 on	
 the	
 issuance	
 of	
 every	
 interrupt.	
 The	
 network	
 card,	

which	
 generates	
 a	
 large	
 amount	
 of	
 interrupts	
 needs	
 this	
 flag	
 cleared	
 often,	

which	
 means	
 the	
 core	
 handling	
 the	
 network	
 UVM	
 may	
 be	
 holding	
 the	

hypervisor	
 lock	
 when	
 a	
 shell	
 UVM	
 core	
 also	
 needs	
 to	
 clear	
 the	
 flag.	

	

Furthermore,	
 the	
 network	
 UVM	
 still	
 performed	
 ~1	
 second	
 faster	
 than	
 the	

hypervisor	
 and	
 micro-­‐kernel	
 only	
 configuration.	
 While	
 this	
 is	
 only	
 a	
 .78%	

difference	
 and	
 cannot	
 be	
 fully	
 claimed	
 as	
 a	
 performance	
 improvement,	
 it	
 can	

nonetheless	
 be	
 claimed	
 that	
 performance	
 wasn’t	
 decreased	
 due	
 to	
 UVMs.	
 The	

equality	
 of	
 performance	
 can	
 be	
 surmised	
 to	
 be	
 from	
 the	
 separation	
 of	
 the	

interrupt	
 heavy	
 network	
 card	
 from	
 the	
 main	
 user	
 component.	
 In	
 this	
 way	

while	
 less	
 cores	
 are	
 present	
 in	
 the	
 shell	
 UVM,	
 the	
 user	
 processes	
 are	

interrupted	
 less	
 due	
 to	
 the	
 absence	
 of	
 the	
 network	
 card,	
 which	
 is	
 most	

noticeable	
 in	
 AIM9	
 testing.	

	

In	
 regards	
 to	
 attack	
 surface	
 the	
 network	
 UVM	
 micro-­‐kernel	
 had	
 a	
 reduction	

from	
 2,904	
 lines	
 of	
 code	
 to	
 2,492	
 resulting	
 in	
 a	
 15.3%	
 reduction.	
 The	
 user	

space	
 code	
 decreased	
 by	
 7.97%	
 from	
 50,592 to 46,715 lines, 103 of which are

the NUVMHD. The hypervisor saw an increase of 52 to support the additional

introspection and copies. The Shell UVM micro-kernel saw a small increase by 4

	
 135	

to allocate the block of memory needed for binary transfers. The user space

portion needed 20 lines to manage messaging between it and the network UVM.

	

5.4 Summary

	

Networking, the final component of a complete operating system, has been

successfully added to the UVM architecture. Any user now has access to the same

services that a monolithic kernel would provide, but with the added benefit of

enhanced hardware protections and split UVM architecture, proving that it is

possible to securely fragment a kernel and still maintain normal operation.

Additionally, buggy device drivers used as a springboard for a ROP attack may

still be able to infect their UVM, but they have lost their ability to extend that

compromise to other parts of the system. In a similar vein, malicious users have

lost the ability to access and break trusted device drivers. This is all provided on

top of the fact that each individual component, user or driver has a significantly

reduced micro-kernel and user space attack surface, which increases attacker

workload through the restriction of available gadgets. Also, in contrast to most

security techniques, performance of UVMs was either on par or better than a

standard hypervisor, which proves that security can be added to the system that

has little or no performance overhead.

	
 136	

Chapter 6 – Heat Diffusion Scheduling

With the advent of the UVM architecture there is an every increasing number of

independent tasks and processes being executed. While initial UVM performance

with static core assignment is on par or better than a standard hypervisor. This

will not always be the case, as UVM technology transitions deeper into the cloud

and UVMs begin floating between cores. This presents a challenge of identifying

a new scheduling technique for the execution of a multiplicity of tasks across

cores.

What to choose is a complex task, as a wide selection of scheduling algorithms

can be utilized in operating system design and no one size fits all. For example,

real time computing systems [128] must respond to high priority jobs as soon as

they occur, because not doing so could result in system failure. For these types of

environments, preemptive schedulers [129] are used to give preference to highest

priority jobs first and the lowest priority jobs last. In contrast, larger operating

systems often use multilevel feedback queues, which partition the ready queue

into two or more queues [130]. For each new process that is scheduled the system

determines which queue to place the process in. Each queue may have its own

unique scheduling algorithm based on the processes it serves. Additionally, this

allows an under served process to be rescheduled in a higher priority queue and

likewise an over served process to a lower priority queue. However, The main

goal of all of these algorithms is to minimize resource starvation [93], which is

when a process is denied access to a resource it needs to finish execution.

	
 137	

In the context of most operating systems, the critical resource is CPU cycles

needed to execute user, kernel, or hypervisor code. The first version of Bear was

a uniprocessor system that ran a handful of user process drivers and user

programs. Thus, fairness of scheduling was provided to each through the round-

robin algorithm [123]. As it provides a starvation free solution by offering every

processes the same length time slice to run on the processor core before the next

process is scheduled. The enforcement of time slices was provided through the

Programmable Interrupt Timer (PIT), which fired at a constant time interval.

As Bear matured however, new hardware architectures documented in chapter 3

were added to replace legacy systems. The most impactful changes to scheduling

were the replacement of the PIT with the higher resolution APIC timer and the

transition to SMP. The APIC Timer allows scheduling of processes to occur at a

faster rate than allowable with the PIT. Additionally, the APIC architecture allows

for the scheduling of processes across all of the cores available. This was not

possible in the early versions of Bear that utilized the PIT. Nonetheless the round-

robin scheme can still be used with SMP and a discussion of its software

components follows below.

	
 138	

Figure 48 - Scheduling Software Components

First, all processes that are able to run are stored in ready to run queue (1). When

any of the cores (2) generate a timer interrupt they grab a kernel lock (3) and pull

a process from the ready queue (1) in first-in first-out fashion. The process that

was previously running on that core is stored in the process pointer array (4),

which each core has its own entry in the array based on core number. The

previously running process is then put into the end of the ready queue (1). The

next process to run is then stored in that core’s process pointer array (4) entry.

Lastly, the kernel lock (3) is released and the new process executes. This method

of scheduling is repeated for every core each time they receive a timer interrupt.

In addition to architectural changes, the user land component also received several

new complex drivers such as: Network File Sharing Daemon (12,850 lines of

code), the e1000 network card driver (939 lines of code), and the associated LWIP

	
 139	

network stack [131] (33,762 lines of code). From the size of these three

components alone it can be seen that they require additional computing resources

as they form the backbone for network connectivity.

Finally, ever more challenging operating system concepts in diversity [31],

memory security [30], and utility virtual machines have been explored. Through

all of this change, the round-robin scheduler remained in place. Thus, all

performance improvements over this time came from architectural changes that

resided below the round-robin code.

Therefore, a new scheduler was sought to better make use of these new realities

and improve scheduling performance. This would not be without its own set of

challenges, specifically, process affinity [132]. This is a uniquely multiprocessor

problem based on the principle of cache coherency [112]. As in the Intel i7

architecture [133] used in this thesis, the cache is laid out so that each core has its

own L1 and L2 cache and all cores share an L3 cache. When a process moves

from one core to another, information about it is often shared through the L3

cache. This is a process known as snooping [133] by the other core through the L3

cache prior to any transfer. However, when the data is not propagated fast enough

between cores, a cache miss can occur, which introduces a significant time

penalty on execution. The processor often has to go out to main memory to find

the needed data, which is a slower process than when it is available in the cache.

Another issue was the introduction of the e1000 network card and its driver to the

	
 140	

system, as the card itself by default will generate a hardware interrupt once every

256 nanoseconds or every 3.9 million cycles of core execution. Recall, from

chapter 3 that the APIC timer is set to fire once every 34 million cycles. This

means that the core that receives the network interrupts will have each of its time

slices interrupted on average ~8.2 times. Resulting in any process running on that

core receiving less execution time than had it been on another. Thus, breaking the

principle of equal time slice fairness in round-robin scheduling.

To address the above issues and improve overall system performance a method of

scheduling based on heat diffusion [34,134] was implemented. Several beneficial

criteria exist for its selection: it uses a simple, fast, scalable algorithm involving

only nearest neighbor communication [135], and global progress and convergence

are guaranteed through well-established mathematical analysis. The algorithm has

been shown, through simulation [136], to balance multiple independent load

distributions over large-scale architectures [137], even with huge random load

injections. Vector based extensions to the algorithm allow multiple resources

(including process priority, interrupt routing, and CPU load) to be balanced

concurrently [138].

6.1 Implementing diffusion

Previously, much of the supporting research in heat diffusion scheduling had been

done on large interconnected computing systems [34,138]. In these studies, one or

more nodes would quickly become burdened with very large workloads, which

	
 141	

then diffused to other nodes via nearest neighbor communication. The same

principles largely hold true for an individual SMP system, because a single

compute node can now be considered a single processor core.

However, some adjustments are made to the load calculation to account for some

traditional measures that cannot be used to determine heat in a localized system.

Bandwidth can be eliminated as the cores have near instantaneous communication

between each other via a crossbar [133]. All cores share the main memory of the

system, which removes the need to account for memory usage, because no

additional memory is available. Fortunately, new measures for load can be

attributed to process priority, interrupt routing, and individual core load. Driver

processes can be given priority by weighting them at different heat levels than

those of a standard user process as they often times perform more complex tasks.

In terms of routing interrupts, the core receiving them will by default run hotter

than one that is not. Lastly, each process itself carries its own heat that adds load

to a core. These three variables can be stored and summed to calculate the heat of

any core running at any given time. A core can use this heat value to dynamically

offload a process to another core with a lower workload.

Two components exist for mapping heat to a core and then diffusing work

between them. The first is the static component, which is the initialization and

assumptions made for interrupts, process priority, and individual process heat.

The second component is the dynamic load-balancing component that moves

	
 142	

processes between cores. These two pieces were built on top of the round-robin

scheduler to provide the diffusion scheduler. The ready queue can continue to

store all of the runnable processes that are present on the system by making two

minor changes. The first is the addition an identifier in the process structure for

each process that maps it to the core it is bound to. This allows for individual

processes to be tracked across cores for heat calculations and scheduled by their

assigned core. The second modification is the replacement of the qget() function

with the qremove() function for scheduling the next process. Where qget() returns

values from the queue in first-in first-out fashion, the qremove() function allows

the ready queue to be searched by each core via their core ID, which maps to the

new identifier in the process structure. The code for this process can be seen

below.

	
 143	

Figure 49 - Code to Schedule Next Process

ksched_schedule() is called for every timer interrupt to retrieve the next process to

run for a specific core. It relies on reading the core’s local APIC ID (line 9) to

pass to qremove() (line 11) along with the global pointer to the ready queue, and

the helper function assigned_core(). The sole purpose of the helper function is to

return the pointer to the first found process in the ready queue that has been

mapped to that core. The process is then removed from the ready queue by the

qremove() function. Lastly, not seen here is the previously running process is

added back to the end of the ready queue.

To initialize the heat map an array of integers that is of length corresponding to

the number of cores present is created (8 cores on Dell 9010). All of the cores

start with an initial heat value of zero. Cores that handle hardware interrupts can

then be assigned heat values of 0, 10, 100, or 1000. These heat values move with

the interrupt they are assigned to. Driver processes, like the e1000 driver are

assigned heat values of 1 or 10 and move with them as well. All other user space

processes are assigned a heat value of 1. Lastly, when a new process is created it

is always assigned to the core that created it through the fork system call.

The movement of processes to a new core occurs through the dynamic load

balancing code, which is called during a timer interrupt, but before the next

process is retrieved through ksched_schedule(). To ease explanation of how this

	
 144	

code works, the base case of all processes having a heat of 1 and no interrupt heat

assignment is given below.

Figure 50 - Dynamic Load-Balancing Code

The balance() function returns the ID of the core the process will run on the next

time it is scheduled. The ID returned by it is stored in the process identifier that

was added to the process structure. This is accomplished by assigning the heat

value of core zero to a comparator (line 3). Next, the for loop (line 5) iterates over

the remaining values stored in the heat map. Along the way, if the current

comparator’s heat is greater than another core’s heat, it will then swap the lower

heat into the comparator (lines 7-8). Furthermore, the ID of the core with the

lower heat is then stored in the variable ret (line 9). Upon completion of the loop

the core with the least heat is increased by 1 (line 13). The core the process just

ran on has its heat decreased by 1 (line 14).

	
 145	

There are a number of unique ways that the base case can be expanded upon. For

one, the process structure can also be passed into the balance() function. This

allows the routine to check an individual processes heat for comparison and

swapping. So if a driver process with a heat of 10 was being considered for

movement, the left half of the if statement (line 7) is modified to subtract that

processes heat from the comparator (cmp – DELTA – process_assigned_heat).

This also means that a similar change is made to the final addition and

subtractions (lines 13 – 14) such that the process heat is accounted for correctly

(heat_map[ret] += process_assigned_heat, etc). This is just one type of

modification that can be made, but other possibilities exist to find the optimal

load-balancing solution.

Now one facet that has not been discussed is the DELTA (line 7) value used in the

comparator portion of the balancing routine. This value exists due to the process

affinity problem and only was discovered through testing. The primary purpose is

to eliminate cache thrashing across cores in situations when low loads exist. A

good explanation of what happens without a delta variable is when there are 10

processes and 8 cores. In this situation the first 8 processes will be scheduled on

one of the 8 cores. The last two processes after each scheduling round will be

swapped dynamically to one of the other six. Every time one of these swaps

occurs, the next run of that process will result in cache misses and large

	
 146	

performance penalties. Testing with low values for delta was performed to find

the optimal number, which is 2.

6.2 Benchmarks and Analysis

To eliminate as many external factors that could impact performance,

experimentation was completed on the kernel only version of the system. This

removes the slow-down generated by the presence of the hypervisor and the

virtual APIC settings. The memory benchmark is well suited for the evaluation of

the diffusion scheduler as a single process spawns 100 additional processes. This

results in one core having a high initial load that it then transfers to the other

cores.

The initial run of the diffusion scheduler used the code seen in Figure 50 minus

the DELTA variable. The AIM9 test suite, which runs as a single process,

illustrates the problem of process affinity as cache thrashing occurs and results in

high overheads. Once, the issue was noticed, a DELTA of one and two are used in

all further testing. Additional configurations of the scheduler include drivers with

heat values of 10, all drivers pegged to a core, and hardware interrupts of heat 10,

100, or 1000. The results of the varying methods and the round-robin scheduler

performance are seen in Table 6.

	
 147	

Scheduler
Configurations

Cycles
Memory

Cycles
AIM9 Cycles Total

Memory
Time (s)

AIM9
Time

(s)

Total
Time

(s)
Round-Robin
Scheduler

2.9574E+11

1.4455E+11

4.4029E+11

86.98

42.54

129.50

Diffusion –
All Processes 1

2.9185E+11

2.2333E+11

5.1519E+11

85.84

65.69

151.53

Diffusion –
All Processes 1,
Delta 1

2.8910E+11

1.7981E+11

4.6891E+11

85.03

52.88

137.91

Diffusion –
All Processes 1,
Delta 2

2.9378E+11

1.4500E+11

4.3878E+11

86.41

42.65

129.05

Diffusion –
All Processes 1,
Delta 1,
Peg Drivers

2.9111E+11

1.7725E+11

4.6836E+11

85.62

52.13

137.75

Diffusion –
All Processes 1,
Delta 2,
Peg Drivers

2.9316E+11

1.4593E+11

4.3909E+11

86.22

42.92

129.14

Diffusion –
User Processes 1,
Delta 1,
Peg Drivers 10

2.9391E+11

2.0721E+11

5.0112E+11

86.44

60.94

147.39

Diffusion –
User Processes 1,
Delta 2,
Peg Drivers 10

2.9420E+11

1.4323E+11

4.3743E+11

86.53

42.13

128.66

Diffusion - User
Processes 1,
Delta 2,
Interrupts 10,
Peg Drivers 1

2.8634E+11

1.4769E+11

4.3402E+11

84.22

43.44

127.65

Diffusion –
User Processes 1,
Delta 2,
Interrupts 100,
Peg Drivers 1

2.7283E+11

1.5956E+11

4.3239E+11

80.24

46.93

127.17

Diffusion –
User Processes 1,
Delta 2,
Interrupts 1000,
Peg Drivers 1

2.8835E+11

1.6225E+11

4.5060E+11

84.81

47.72

132.53

Table 6 - Scheduler Performance Characterization

	
 148	

When reviewing Table 6, it is important to examine the individual tests first when

evaluating the new scheduler, as the memory test benefits from improvements to

multi-process execution. Whereas the AIM9 test suite sees performance gains

when single process execution is sped up through an enhancement. Adding the

times it takes to complete both tests together provides an overall measure of

performance, but may miss potential impacts to either form of execution.

For example, on the surface the diffusive scheduler without the DELTA variable

overall performs 15.68% worse than the round-robin scheduler. This is solely

because of a 42.78% performance penalty taken during single process execution

of the AIM9 suite due to cache thrashing. In fact, multi-process execution during

memory testing is improved by 1.32%, which almost certainly is impacted by

cache thrashing to some degree. Thus, all testing is performed with a DELTA

present. As noticeable performances gains were only shown using a DELTA of

two, the following discussions will only be in regards to that setting.

The diffusive scheduler performs equivalently to the round-robin scheduler once

process affinity has been accounted for. Further exploration of increasing process

affinity was explored by pegging drivers to a single core. This alone did not result

in any performance gains. In attempt to isolate drivers further from user tasks,

their heat value was increased from 1 to 10. As this resulted in a .52% speedup for

memory, a .97% speedup for AIM9, and an overall speedup of .70%.

	
 149	

Unfortunately, these results provide less than a 1% margin for scheduling

improvement.

The last variable that impacts normal core execution is hardware interrupts. In this

approach the core receiving hardware interrupts from the I/O APIC will be

assigned a heat of 10, 100, or 1,000. Drivers will continued to be pegged to cores

to improve their individual process affinity as testing showed a marginal benefit

in doing so. The graphed results of increasing heat can be seen in Figure 51

below.

Figure 51 - Diffusion Performance as Interrupt Heat Rises

Looking at the graph it can be seen that from 0 to 100, memory and overall

performance improve, while AIM9 performance decreases as interrupt heat rises.

0	

20	

40	

60	

80	

100	

120	

140	

0	
 10	
 100	
 1000	

Ti
m
e	

Se
co
nd
s	

Interrupt	
 Heat	

Memory	
 Benchmark	

AIM9	
 Benchmark	

Overall	
 Performance	

	
 150	

Going from 100 to 1000 heat causes a decrease in all three categories. However,

the setting of this variable at 100 has an effect of improving multi-process

performance by 8.06%, but decreasing single process performance by 9.81%,

which amounts to an overall performance increase of 1.82%. These results are

noteworthy as they clearly demonstrate that the heat diffusion algorithm has a

marked scheduling improvement in environments with heavy workloads.

With all of the changes to the scheduler, it could be expected that there was a

large addition of lines of code, which would increase the attack surface. However,

this was not the case, as repurposing pieces of the round-robin scheduler kept the

need for additional lines of code low. To add the minimal amount of support for

diffusion, 29 lines of code were needed for the configuration presented in Figure

50. To go to the full interrupt and driver pegging setup requires only an additional

23 lines of code, which brings the total to 52 lines.

6.3 Summary

This chapter has shown that methods like heat diffusion can provide performance

improvements for multi-process environments, which will be critical for the

expansion of the UVM work to the cloud. As year after year has shown that cloud

services continue to expand and core count on processors continue to rise.

However, deployment of diffusive schedulers should initially be limited to multi-

process environments, because initial testing has shown a decrease in

performance for single process tasks.

	
 151	

	
 152	

Chapter 7 – Conclusions and Future Work

This	
 thesis	
 examined	
 the	
 possibility	
 of	
 increasing	
 attacker	
 workload	
 and	

mitigating	
 zero-­‐day	
 threats	
 through	
 the	
 redesign	
 of	
 the	
 standard	

virtualization	
 architecture.	
 An	
 approach	
 based	
 on	
 shrinking	
 the	
 kernel	
 and	

user	
 components	
 to	
 be	
 encapsulated	
 into	
 lightweight	
 Utility	
 Virtual	
 Machines	

was	
 implemented	
 in	
 conjunction	
 with	
 scheduling	
 technologies	
 to	
 balance	

load.	
 Exceeding	
 the	
 expectations	
 of	
 its	
 original	
 design	
 goals,	
 the	
 UVM	

technology	
 provides	
 the	
 desired	
 virtualization	
 sandboxing	
 and	
 performed	
 on	

par	
 or	
 better	
 than	
 monolithic	
 virtualization	
 performance,	
 all	
 while	
 achieving	

its	
 goal	
 of	
 reducing	
 the	
 overarching	
 attack	
 surface.	

	

7.1 Conclusions

Observations	
 about	
 attack	
 surface	
 for	
 the	
 various	
 UVMs	
 were	
 made	
 in	

chapters	
 4	
 and	
 5.	
 They	
 have	
 been	
 summarized	
 here	
 in	
 Table	
 7	
 for	
 discussion	

purposes,	
 with	
 reductions	
 marked	
 with	
 ↓	
 and	
 gains	
 marked	
 with	
 ↑.	
 	

	
 	

	
 153	

	

Lines
of

Code

Net Line
Addition/
Reduction

Percent
Addition/
Reduction

Estimated Number
of Potential

Vulnerabilities [27]

Net Potential
Vulnerability

Increase/
Decrease

Hypervisor 2,489 X 0.0% 0.2240 X
Micro-Kernel 2,904 X 0.0% 0.2614 X
Micro-Kernel
user space 50,592 X 0.0% 4.5533 X
UVM
Hypervisor 2,706 217 ↑ 8.4% ↑ 0.2435 0.0195 ↑
Keyboard/VGA
UVM Micro-
Kernel 2,072 832 ↓ 33.4% ↓ 0.1865 0.0749↓
Keyboard/VGA
UVM User
Space 1,210 49382 ↓ 190.7% ↓ 0.1089 4.4444↓
Shell UVM
Micro-Kernel 2,311 593 ↓ 22.7% ↓ 0.2080 0.0534↓
Shell UVM
User Space 2,600 47992 ↓ 180.4% ↓ 0.2340 4.3193↓
Network UVM
Micro-Kernel 2,492 412 ↓ 15.3% ↓ 0.2243 0.0371 ↓
Network UVM
User Space 46,715 3877 ↓ 8.0% ↓ 4.2044 0.3489 ↓

Table 7 - Summary of Attack Surface Reduction

The	
 biggest	
 source	
 of	
 concern	
 is	
 user	
 space	
 code,	
 which	
 using	
 Pandey	
 et	
 al.	

approach	
 of	
 estimating	
 .09	
 defects	
 per	
 1,000	
 lines	
 of	
 code,	
 shows	
 that	
 it	

contains	
 4.5533	
 defects.	
 By	
 segmenting	
 this	
 code	
 across	
 UVMs,	
 an	
 attacker	

has	
 a	
 significantly	
 reduced	
 attack	
 surface,	
 which	
 reduces	
 the	
 number	
 of	
 bugs	

and	
 ROP	
 gadgets	
 in	
 all	
 cases.	
 Furthermore,	
 the	
 micro-­‐kernels	
 residing	
 below	

in	
 all	
 of	
 these	
 instances	
 have	
 also	
 seen	
 significant	
 attack	
 surface	
 reductions.	

Lastly,	
 one-­‐way	
 communication	
 channels	
 are	
 tightly	
 enforced	
 and	
 can	
 only	

initiated	
 by	
 select	
 UVM	
 processes.	
 Thus,	
 if	
 an	
 attacker	
 did	
 gain	
 a	
 foothold	
 in	

either	
 the	
 network	
 or	
 Keyboard/VGA	
 space	
 they	
 would	
 have	
 no	
 means	
 to	

compromise	
 any	
 other	
 driver	
 UVM	
 present.	
 The	
 shell	
 UVM	
 would	
 only	
 be	

impacted	
 if	
 it	
 were	
 active	
 and	
 no	
 compromise	
 could	
 occur	
 if	
 it	
 was	
 dormant.	
 	

	
 154	

Working	
 on	
 network	
 time	
 scales	
 the	
 driver	
 UVMs	
 could	
 be	
 refreshed	
 prior	
 to	

the	
 user	
 logging	
 into	
 the	
 shell	
 UVM,	
 which	
 would	
 mitigate	
 much	
 of	
 this	
 risk.	

	

However,	
 the	
 hypervisor	
 did	
 have	
 to	
 grow	
 a	
 small	
 amount	
 to	
 support	
 these	

code	
 size	
 reductions.	
 This	
 was	
 deemed	
 an	
 acceptable	
 risk,	
 as	
 the	
 hypervisor	

is	
 located	
 below	
 the	
 EPT	
 created	
 semantic	
 gap,	
 which	
 offers	
 it	
 considerable	

protection.	
 Moreover,	
 the	
 hypervisor	
 operates	
 solely	
 as	
 an	
 intermediary	

between	
 UVM	
 guests.	
 Nothing	
 the	
 hypervisor	
 introspects	
 is	
 ever	
 executed	

and	
 mappings	
 only	
 subsist	
 while	
 a	
 core	
 is	
 within	
 the	
 hypervisor.	
 In	
 following	

this	
 standard	
 the	
 hypervisor	
 is	
 protected	
 in	
 the	
 event	
 a	
 guest	
 is	

compromised.	
 	

	

Lastly,	
 beyond	
 the	
 reductions	
 the	
 commonly	
 accepted	
 thought	
 of	
 attack	

surface	
 has	
 completely	
 changed	
 from	
 the	
 standard	
 monolithic	
 approach.	
 All	

that	
 remains	
 is	
 the	
 hypervisor;	
 the	
 low	
 hanging	
 fruits,	
 which	
 are	
 the	
 guests,	

have	
 been	
 completely	
 sandboxed	
 through	
 hardware	
 enforced	
 isolation.	
 An	

attacker	
 can	
 no	
 longer	
 compromise	
 the	
 network	
 and	
 have	
 immediate	
 access	

to	
 the	
 shell.	
 Nor	
 could	
 a	
 malicious	
 user	
 compromise	
 the	
 shell	
 and	
 directly	

inject	
 code	
 into	
 a	
 driver.	
 This	
 by	
 itself	
 greatly	
 increases	
 the	
 workload	
 of	
 any	

attacker.	

	

	
 155	

7.2 Future Work

This	
 work	
 provides	
 a	
 stepping	
 off	
 point	
 for	
 multiple	
 continued	
 research	

efforts.	
 Foremost	
 being	
 the	
 transitioning	
 of	
 UVM	
 concepts	
 to	
 larger	
 scale	

industry	
 projects,	
 such	
 as	
 Intel	
 supporting	
 EPT	
 switching	
 for	
 Xen	
 hypervisor	

guests	
 [139].	
 This	
 technology	
 is	
 designed	
 to	
 increase	
 the	
 performance	
 of	

inter-­‐VM	
 communication,	
 which	
 is	
 provided	
 through	
 VMCALLs	
 in	
 Xen	
 and	
 is	

a	
 cornerstone	
 of	
 the	
 UVM	
 work.	
 Coupling	
 a	
 network	
 UVM	
 with	
 this	

technology	
 would	
 allow	
 for	
 far	
 greater	
 transfer	
 speeds	
 while	
 maintaining	

network	
 isolation.	
 	

	

Another	
 corporation	
 that	
 is	
 also	
 pursuing	
 similar	
 technology	
 is	
 Docker,	

which	
 acquired	
 Unikernel	
 Systems	
 in	
 January	
 2016	
 [140].	
 Their	
 express	

intention	
 of	
 this	
 acquisition	
 is	
 to	
 leverage	
 unikernels	
 to	
 build	
 VM	
 containers	

that	
 perform	
 small	
 roles.	
 This	
 planned	
 technology	
 is	
 almost	
 a	
 one	
 for	
 one	

recreation	
 of	
 UVMs,	
 but	
 with	
 a	
 unikernel	
 replacing	
 the	
 role	
 of	
 the	
 micro-­‐

kernel.	
 	

	

One	
 area	
 that	
 needs	
 more	
 attention	
 across	
 type	
 1,	
 type	
 2,	
 and	
 UVM	

architectures	
 is	
 the	
 creation	
 of	
 guests.	
 This	
 is	
 and	
 largely	
 remains	
 a	
 manually	

intensive	
 process	
 of	
 either	
 programming	
 or	
 compiling	
 what	
 is	
 desired	
 into	

the	
 guest.	
 Any	
 future	
 work	
 in	
 this	
 field	
 should	
 focus	
 on	
 user-­‐friendly	

alternatives	
 that	
 can	
 be	
 used	
 to	
 quickly	
 create	
 a	
 new	
 containerized	
 VM.	

	

	
 156	

In	
 terms	
 of	
 diffusive	
 scheduling	
 the	
 surface	
 has	
 only	
 been	
 scratched	
 in	
 terms	

of	
 its	
 performance	
 benefits.	
 As	
 this	
 technology	
 can	
 be	
 combined,	
 with	
 the	

already	
 existing	
 faculties	
 to	
 run	
 across	
 multiple	
 instances	
 in	
 a	
 cloud	
 [25]	
 and	

the	
 resilient	
 inter-­‐process	
 communication	
 mechanisms	
 [141].	
 This	
 will	
 also	

reintroduce	
 a	
 greater	
 number	
 of	
 variables	
 to	
 the	
 scheduling	
 algorithm,	
 such	

as	
 bandwidth,	
 memory	
 usage,	
 and	
 other	
 related	
 distributed	
 computing	

measures.	
 Combining	
 with	
 greater	
 computing	
 resources	
 will	
 only	
 improve	

multiple	
 process	
 performance	
 demonstrated	
 in	
 this	
 thesis	
 further.	
 Since	
 it	

has	
 already	
 been	
 proven	
 that	
 diffusion	
 can	
 be	
 extended	
 “to	
 operate	
 across	

multiple	
 processors	
 using	
 only	
 local	
 nearest	
 neighbor	
 communication	
 with	
 well	

understood	
 global	
 convergence	
 and	
 termination	
 properties”	
 [142].	
 	

	

This	
 also	
 opens	
 the	
 possibility	
 of	
 porting	
 the	
 diffusive	
 scheduler	
 to	
 the	

hypervisor.	
 Which	
 would	
 allow	
 the	
 ability	
 to	
 balance	
 multiple	
 user	
 UVMs	

across	
 many	
 servers.	
 In	
 turn	
 this	
 creates	
 new	
 and	
 interesting	
 challenges	
 in	

determining	
 what	
 setups	
 should	
 be	
 used	
 across	
 this	
 distributed	
 network	
 for	

driver	
 and	
 user	
 UVMs.	

	
 157	

Appendix A – Stage One Bootloader Code

###	
 boot1.S	

###	
 This	
 file	
 is	
 placed	
 at	
 the	
 start	
 of	
 a	
 slice,	
 and	
 is	
 called	
 by	

###	
 the	
 MBR's	
 512-­‐byte	
 block.	
 For	
 compatibility	
 reasons,	
 this	
 file	
 is	

###	
 also	
 exactly	
 512	
 bytes.	

###	

###	
 Copyright	
 (c)	
 2011	
 Morgon	
 Kanter	

###	
 All	
 rights	
 reserved.	

###	
 Redistribution	
 and	
 use	
 in	
 source	
 and	
 binary	
 forms	
 are	
 freely	

###	
 permitted	
 provided	
 that	
 the	
 above	
 copyright	
 notice	
 and	
 this	

###	
 paragraph	
 and	
 the	
 following	
 disclaimer	
 are	
 duplicated	
 in	
 all	

###	
 such	
 forms.	

###	

###	
 This	
 software	
 is	
 provided	
 "AS	
 IS"	
 and	
 without	
 any	
 express	
 or	

###	
 implied	
 warranties,	
 including,	
 without	
 limitation,	
 the	
 implied	

###	
 warranties	
 of	
 merchantability	
 and	
 fitness	
 for	
 a	
 particular	

###	
 purpose.	

	

###	
 Make	
 sure	
 this	
 is	
 linked	
 with	
 -­‐Ttext=0x7c00,	
 which	
 is	
 the	
 address	

###	
 that	
 both	
 the	
 MBR	
 gets	
 loaded	
 in	
 from	
 the	
 BIOS,	
 and	
 the	
 address	

###	
 where	
 the	
 actual	
 MBR	
 loads	
 this	
 in.	

###	

###	
 Just	
 as	
 when	
 we're	
 loaded	
 up	
 by	
 the	
 MBR,	
 the	
 drive	
 entry	
 will	
 be	

###	
 placed	
 in	
 %dl	
 and	
 our	
 slice	
 from	
 the	
 main	
 table	
 will	
 be	
 placed	
 in	

###	
 %si.	

###	

	
 158	

###	
 Note	
 if	
 you	
 go	
 to	
 disassemble	
 this	
 with	
 objdump,	
 the	
 output	
 will	

###	
 almost	
 certainly	
 be	
 wrong	
 for	
 some	
 sections.	
 This	
 is	
 because	
 we	

###	
 mix	
 16-­‐,	
 32-­‐,	
 and	
 64-­‐bit	
 code	
 in	
 the	
 same	
 file.	
 This	
 is	
 all	
 very	

###	
 clearly	
 delimited	
 by	
 the	
 .code16,	
 .code32,	
 and	
 .code64	
 designators	

###	
 given	
 at	
 those	
 points	
 in	
 this	
 file.	

	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Global	
 symbols	

	
 	
 	
 	
 	
 	
 	
 	
 .globl	
 gdt_long	

	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Memory	
 locations	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 BOOT_STACK,0x7bf8	
 	
 	
 #	
 location	
 of	
 the	
 stack	
 "bottom"...	
 the	
 stack	
 grows	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 down	
 so	
 this	
 is	
 the	
 highest	
 addr	
 of	
 the	
 stack.	
 It	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 would	
 hit	
 the	
 partition	
 table	
 if	
 it	
 overran.	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 MEM_LOADED,0x7c00	
 	
 	
 #	
 Where	
 we're	
 loaded	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 MEM_DLBL,0x7e00	
 	
 	
 	
 	
 #	
 Start	
 of	
 disklabel	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 DLBL_BBASE,0x7e28	
 	
 	
 #	
 "bbase"	
 in	
 disklabel	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 PART_TBL,0x7be	
 	
 	
 	
 	
 	
 #	
 Partition	
 table	
 for	
 the	
 disk	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 NUM_PART,0x88	
 	
 	
 	
 	
 	
 	
 #	
 Offset	
 to	
 number	
 of	
 partitions	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Place	
 to	
 put	
 the	
 available	
 memory.	
 Be	
 sure	
 not	
 to	
 use	
 the	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 first	
 low	
 0x500	
 bytes	
 of	
 this	
 (it's	
 the	
 IVT	
 etc).	
 This	
 is	
 a	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 many-­‐entry	
 table,	
 with	
 24-­‐byte	
 entries,	
 each	
 with	
 the	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 following	
 format:	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 First	
 qword	
 =	
 Base	
 address	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Second	
 qword	
 =	
 Length	
 of	
 "region"	
 (if	
 0,	
 ignore	
 the	
 entry).	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Next	
 dword	
 =	
 Region	
 "type"	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 	
 	
 *	
 Type	
 1:	
 Usable	
 (normal)	
 RAM	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 	
 	
 *	
 Type	
 2:	
 Reserved	
 -­‐	
 unusable	

	
 159	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 	
 	
 *	
 Type	
 3:	
 ACPI	
 reclaimable	
 memory	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 	
 	
 *	
 Type	
 4:	
 ACPI	
 NVS	
 memory	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 	
 	
 *	
 Type	
 5:	
 Area	
 containing	
 bad	
 memory	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Next	
 dword	
 =	
 ACPI	
 3.0	
 extended	
 attributes	
 bitfield	
 (if	
 24	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 bytes	
 are	
 returned,	
 but	
 we	
 increment	
 24	
 bytes	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 regardless).	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 	
 	
 *	
 Bit	
 0	
 of	
 the	
 extended	
 attributes	
 field	
 indicates	
 if	
 the	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 	
 	
 	
 	
 entire	
 entry	
 should	
 be	
 ignored.	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 	
 	
 *	
 Bit	
 1	
 of	
 the	
 extended	
 attributes	
 field	
 indicates	
 if	
 the	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 	
 	
 	
 	
 entry	
 is	
 non-­‐volatile	
 (whatever	
 that	
 means).	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 This	
 information	
 was	
 taken	
 from:	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 http://wiki.osdev.org/Detecting_Memory_%28x86%29	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 MEM_ENTRIES,0x802	
 	
 	
 	
 	
 	
 #	
 Number	
 of	
 mem	
 table	
 entries	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 MEMTABLE,0x804	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Mem	
 table	

	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Basic	
 page	
 table	
 locations	
 for	
 baby's	
 first	
 page	
 tables	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 PML4T,0x1000	
 	
 	
 	
 	
 	
 	
 	
 #	
 Page	
 map	
 level	
 4	
 table	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 PDPT,0x2000	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Page	
 directory	
 pointer	
 table	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 PDT,0x3000	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Page	
 directory	
 table	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 PT,0x4000	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Page	
 table	

	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Constants	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 PARTSIZE,0x10	
 	
 	
 	
 	
 	
 	
 #	
 Size	
 of	
 partition	
 entry	
 in	
 label	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 MAGIC,0xaa55	
 	
 	
 	
 	
 	
 	
 	
 #	
 Magic:	
 bootable	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 EMAGIC,0x534D4150	
 	
 	
 #	
 e820	
 Magic	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 SEL_CODE,0x08	
 	
 	
 	
 	
 	
 	
 #	
 Code	
 selector	

	
 	
 	
 	
 	
 	
 	
 	
 .set	
 SEL_LCODE,0x08	
 	
 	
 	
 	
 	
 #	
 Code	
 selector,	
 long	
 mode	

	
 160	

	

	
 	
 	
 	
 	
 	
 	
 	
 .globl	
 start	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Entry	
 point	

	
 	
 	
 	
 	
 	
 	
 	
 .code16	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Real	
 mode,	
 for	
 now	

start:	

	
 	
 	
 	
 	
 	
 	
 	
 xorw	
 %ax,%ax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Zero	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%es	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Address	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%ds	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 data	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%ss	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Set	
 up	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 $MEM_LOADED,%sp	
 	
 #	
 	
 stack	

	

mmap.0:	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 $MEMTABLE-­‐24,%di	
 	
 	
 #	
 Memory	
 table	

	
 	
 	
 	
 	
 	
 	
 	
 xorl	
 %ebx,%ebx	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Zero	

	
 	
 	
 	
 	
 	
 	
 	
 pushw	
 %si	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Save	
 %si	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%si	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Zero	

mmap:	

	
 	
 	
 	
 	
 	
 	
 	
 addw	
 $24,%di	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Set	
 next	
 map	
 entry	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 $0xe820,%eax	
 	
 	
 	
 	
 	
 	
 	
 #	
 Get	
 memory	
 map	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 $24,%ecx	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Buffer	
 size	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 $EMAGIC,%edx	
 	
 	
 	
 	
 	
 	
 	
 #	
 Signature	

	
 	
 	
 	
 	
 	
 	
 	
 int	
 $0x15	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Get	
 memory	
 map	

	
 	
 	
 	
 	
 	
 	
 	
 jc	
 mmap.1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Method	
 #1	
 of	
 marking	
 finished	

	
 	
 	
 	
 	
 	
 	
 	
 cmpl	
 $EMAGIC,%eax	
 	
 	
 	
 	
 	
 	
 	
 #	
 Error?	

	
 	
 	
 	
 	
 	
 	
 	
 jne	
 mem_err	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Yes	

	
 	
 	
 	
 	
 	
 	
 	
 incw	
 %si	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Total	
 number	
 of	
 entries	

	
 	
 	
 	
 	
 	
 	
 	
 cmpl	
 $0x0,%ebx	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Method	
 #2	
 of	
 marking	
 finished	

	
 	
 	
 	
 	
 	
 	
 	
 jne	
 mmap	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Not	
 finished	

	
 161	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Now	
 that	
 we	
 have	
 the	
 memory	
 map	
 set	
 up,	
 let's	
 see	
 about	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 entering	
 protected	
 mode	
 (in	
 the	
 32-­‐bit	
 part	
 of	
 file).	

mmap.1:	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %si,MEM_ENTRIES	
 	
 	
 	
 	
 #	
 Number	
 of	
 memtable	
 entries	

	
 	
 	
 	
 	
 	
 	
 	
 popw	
 %si	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Restore	
 %si	

	
 	
 	
 	
 	
 	
 	
 	
 jmp	
 postmem	

	

mem_err:	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 $msg_mem,%si	
 	
 	
 	
 	
 	
 	
 	
 #	
 "Memory	
 detection	
 error"	

	
 	
 	
 	
 	
 	
 	
 	
 jmp	
 putstr	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Error	
 out	

	

###	
 Output	
 an	
 ASCIZ	
 string	
 to	
 the	
 console	
 via	
 the	
 BIOS.	

putstr.0:	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 $0x7,%bx	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Page:attribute	

	
 	
 	
 	
 	
 	
 	
 	
 movb	
 $0xe,%ah	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 BIOS:	
 Display	

	
 	
 	
 	
 	
 	
 	
 	
 int	
 $0x10	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 character	

putstr:	

	
 	
 	
 	
 	
 	
 	
 	
 lodsb	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Get	
 character	

	
 	
 	
 	
 	
 	
 	
 	
 testb	
 %al,%al	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 End	
 of	
 string?	

	
 	
 	
 	
 	
 	
 	
 	
 jnz	
 putstr.0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 No	

putstr.1:	

	
 	
 	
 	
 	
 	
 	
 	
 jmp	
 putstr.1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Await	
 reset.	

	

msg_mem:.asciz	
 "Memory	
 detection	
 error"	

	

###	
 The	
 GDT.	
 This	
 table	
 looks	
 retarded:	

###	
 	
 -­‐	

	
 162	

###	
 |0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 15|16	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 31|	

###	
 -­‐	

###	
 |	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Limit	
 0:15	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Base	
 0:15	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 |	

###	
 -­‐	

###	
 |32	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 39|40	
 	
 	
 	
 	
 	
 	
 	
 	
 47|48	
 	
 	
 	
 	
 	
 	
 	
 51|52	
 	
 	
 	
 	
 	
 	
 55|56	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 63|	

###	
 -­‐	

###	
 |Base	
 16:23|Access	
 Byte|Limit	
 16:19|Flags|Base	
 24:31|	

###	
 -­‐	

###	

###	
 The	
 bit	
 arithmetic	
 here	
 is	
 horrible.	
 The	
 access	
 byte	
 and	
 flags	
 go	

###	
 in	
 backwards	
 from	
 what	
 you'd	
 expect	
 (they	
 are	
 defined	
 bitwise	

###	
 starting	
 from	
 7	
 and	
 going	
 to	
 0,	
 so	
 when	
 you	
 specify	
 it	
 you	
 have	
 to	

###	
 reverse	
 so	
 it	
 starts	
 at	
 0	
 and	
 goes	
 to	
 7...).	

gdt:	

	
 	
 	
 	
 	
 	
 	
 	
 .word	
 0x0,	
 0x0,	
 0x0,	
 0x0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Null	
 entry	

	
 	
 	
 	
 	
 	
 	
 	
 .word	
 0xffff,	
 0x0,	
 0x9a00,	
 0x00cf	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Code	
 entry	
 (SEL_CODE)	

	
 	
 	
 	
 	
 	
 	
 	
 .word	
 0xffff,	
 0x0,	
 0x9200,	
 0x00cf	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Data	
 entry	

	
 	
 	
 	
 	
 	
 	
 	
 .word	
 0xffff,	
 0x0,	
 0xfa00,	
 0x00cf	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 User	
 code	
 entry	

	
 	
 	
 	
 	
 	
 	
 	
 .word	
 0xffff,	
 0x0,	
 0xf200,	
 0x00cf	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 User	
 data	
 entry	

gdt_48:	

	
 	
 	
 	
 	
 	
 	
 	
 .word	
 .-­‐gdt-­‐1	

	
 	
 	
 	
 	
 	
 	
 	
 .long	
 gdt	

###	
 If	
 we're	
 short	
 on	
 space,	
 we	
 can	
 do	
 the	
 following	
 by	
 modifying	
 the	

###	
 memory	
 at	
 gdt	
 instead	
 of	
 duplicating	
 it	
 all	
 and	
 save	
 about	
 20	

###	
 bytes	
 in	
 the	
 process.	

###	
 NOTE:	
 If	
 this	
 expands/contracts,	
 update	
 GDT_SIZE	
 in	
 constants.h	

gdt_long:	

	
 163	

	
 	
 	
 	
 	
 	
 	
 	
 .word	
 0x0,	
 0x0,	
 0x0,	
 0x0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Null	
 entry	

	
 	
 	
 	
 	
 	
 	
 	
 .word	
 0xffff,	
 0x0,	
 0x9a00,	
 0x00af	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Code	
 entry	
 (SEL_LCODE)	

	
 	
 	
 	
 	
 	
 	
 	
 .word	
 0xffff,	
 0x0,	
 0x9200,	
 0x00cf	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Data	
 entry	

	
 	
 	
 	
 	
 	
 	
 	
 .word	
 0xffff,	
 0x0,	
 0xfa00,	
 0x00af	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 User	
 code	
 entry	

	
 	
 	
 	
 	
 	
 	
 	
 .word	
 0xffff,	
 0x0,	
 0xf200,	
 0x00cf	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 User	
 data	
 entry	

	
 	
 	
 	
 	
 	
 	
 	
 .word	
 0x0067,	
 0x6400,	
 0x8900,	
 0x0010	
 	
 #	
 TSS,	
 depends	
 on	
 MEM_TSS_BASE	

	
 	
 	
 	
 	
 	
 	
 	
 .word	
 0x0,	
 0x0,	
 0x0,	
 0x0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 TSS	
 Entry	
 Part	
 2	

gdtlong_48:	

	
 	
 	
 	
 	
 	
 	
 	
 .word	
 .-­‐gdt_long-­‐1	

	
 	
 	
 	
 	
 	
 	
 	
 .long	
 gdt_long	

	

###	
 Do	
 things	
 that	
 we	
 need	
 to	
 enter	
 protected	
 mode.	

postmem:	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Set	
 video	
 mode	
 to	
 80x25	
 for	
 basic	
 console.	

	
 	
 	
 	
 	
 	
 	
 	
 mov	
 $3,%ax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Video	
 mode	
 80x25x16	

	
 	
 	
 	
 	
 	
 	
 	
 int	
 $0x10	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Interrupt	
 (set	
 video	
 mode)	

	
 	
 	
 	
 	
 	
 	
 	
 mov	
 $0x1003,%ax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Toggle	
 blinking	

	
 	
 	
 	
 	
 	
 	
 	
 mov	
 $0,%bx	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Blinking	
 disabled	

	
 	
 	
 	
 	
 	
 	
 	
 int	
 $0x10	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Interrupt	
 (set	
 video	
 mode)	

loadgdt:	

	
 	
 	
 	
 	
 	
 	
 	
 lgdt	
 gdt_48	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Load	
 gdt	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Don't	
 set	
 up	
 the	
 selectors	
 yet,	
 they	
 push	
 every	
 data	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 reference	
 16	
 bytes	
 higher	
 because,	
 since	
 we	
 aren't	
 yet	
 in	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 protected	
 mode,	
 they	
 aren't	
 "selectors",	
 they	
 are	
 still	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 just	
 real-­‐mode	
 segment	
 offsets!	

loadidt:	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 We	
 don't	
 have	
 nearly	
 the	
 amount	
 of	
 space	
 here	
 to	
 set	
 up	
 a	

	
 164	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 desirable	
 interrupt	
 table!	
 Defer	
 it	
 for	
 when	
 we	
 go	
 to	
 the	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 C	
 boot	
 code.	

loadtss:	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Not	
 really	
 interesting	
 to	
 set	
 up	
 the	
 TSS	
 here	
 either,	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 because	
 we	
 have	
 no	
 interrupts.	
 Let	
 the	
 C	
 boot	
 code	
 do	
 this,	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 when	
 it	
 handles	
 interrupts.	

protected.0:	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Now	
 we	
 can	
 set	
 up	
 what	
 will	
 become	
 the	
 selectors,	
 since	
 we	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 have	
 no	
 more	
 data	
 references	
 to	
 make.	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 $0x10,%ax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Set	
 segment	
 selectors	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%ds	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 data	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%ss	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 stack	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%es	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 es	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%fs	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 fs	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%gs	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 gs	

	
 	
 	
 	
 	
 	
 	
 	
 cli	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Disable	
 interrupts	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 %cr0,%eax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Control	
 Register	
 0	
 to	
 %eax	

	
 	
 	
 	
 	
 	
 	
 	
 orb	
 $0x1,%al	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Set	
 the	
 lowest	
 bit	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 %eax,%cr0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 %eax	
 to	
 Control	
 Register	
 0	

	
 	
 	
 	
 	
 	
 	
 	
 ljmp	
 $SEL_CODE,$protected	
 #	
 Protected	
 mode	

	
 	
 	
 	
 	
 	
 	
 	
 .code32	

protected:	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Now	
 we're	
 in	
 protected	
 mode.	
 Set	
 up	
 long	
 mode.	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Have	
 to	
 re-­‐set	
 the	
 segment	
 selectors	
 here,	
 so	
 they	
 are	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 considered	
 32	
 bit	
 (otherwise,	
 any	
 time	
 we	
 set	
 data	
 it	
 will	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 fail).	
 I'm	
 not	
 sure	
 if	
 this	
 is	
 a	
 bug	
 in	
 QEMU	
 or	
 if	
 it	
 works	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 this	
 way	
 on	
 bare	
 hardware	
 as	
 well.	

	
 165	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 $0x10,%ax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Set	
 segment	
 selectors	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%ds	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 data	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%ss	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 stack	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%es	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 es	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%fs	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 fs	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%gs	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 gs	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 %cr4,%eax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Control	
 Register	
 4	
 to	
 %eax	

	
 	
 	
 	
 	
 	
 	
 	
 bts	
 $5,%eax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Set	
 PAE	

	
 	
 	
 	
 	
 	
 	
 	
 bts	
 $7,%eax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Set	
 pages	
 golbal	
 enable	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 %eax,%cr4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 %eax	
 to	
 Control	
 Register	
 4	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 $0xc0000080,%ecx	
 	
 	
 	
 #	
 EFER	
 register	

	
 	
 	
 	
 	
 	
 	
 	
 rdmsr	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 EFER	
 to	
 %eax	

	
 	
 	
 	
 	
 	
 	
 	
 bts	
 $8,%eax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Set	
 IA-­‐32e	
 (long	
 mode)	

	
 	
 	
 	
 	
 	
 	
 	
 bts	
 $11,%eax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Allow	
 No-­‐EXecute	
 bit	

	
 	
 	
 	
 	
 	
 	
 	
 wrmsr	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 %eax	
 to	
 EFER	

paging.0:	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Set	
 up	
 64-­‐bit	
 paging	
 -­‐-­‐	
 required	
 before	
 we're	
 actually	
 in	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 long	
 mode.	
 The	
 first	
 1	
 MB	
 will	
 be	
 identity-­‐mapped.	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 $PML4T,%edi	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Page-­‐map	
 level	
 4	
 table	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 %edi,%cr3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 in	
 base	
 table	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 $4096,%ecx	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 4	
 kb*4	
 count	

	
 	
 	
 	
 	
 	
 	
 	
 xorl	
 %eax,%eax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Zero	

	
 	
 	
 	
 	
 	
 	
 	
 rep	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Clear	

	
 	
 	
 	
 	
 	
 	
 	
 stosl	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 PML4T	

paging.1:	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Set	
 the	
 first	
 entry	
 of	
 each	
 page	
 table	
 level	
 to	
 point	
 to	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 the	
 next	
 level.	
 This	
 handles	
 the	
 pointing	
 of	
 PML4T	
 to	
 PDPT,	

	
 166	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 PDPT	
 to	
 PDT,	
 and	
 PDT	
 to	
 PT.	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 $3,%ecx	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Count	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 %cr3,%edi	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Destination	
 (Page	
 tables)	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 $0x1000,%eax	
 	
 	
 	
 	
 	
 	
 	
 #	
 Increment	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 $0x2003,%ebx	
 	
 	
 	
 	
 	
 	
 	
 #	
 Page	
 present,	
 read/writable	

paging.2:	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 %ebx,(%edi)	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Point	
 to	
 next	
 paging	
 level	

	
 	
 	
 	
 	
 	
 	
 	
 addl	
 %eax,%ebx	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Next	
 level	

	
 	
 	
 	
 	
 	
 	
 	
 addl	
 %eax,%edi	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Next	
 level	

	
 	
 	
 	
 	
 	
 	
 	
 loop	
 paging.2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 For	
 each	
 page	
 level	

paging.3:	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Set	
 each	
 page	
 of	
 the	
 PT	
 level	
 to	
 be	
 read/writable.	
 Note	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 that	
 %edi	
 now	
 points	
 to	
 the	
 PT	
 level	
 thanks	
 to	
 the	
 loop.	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 $0x00000103,%ebx	
 	
 	
 	
 #	
 Page	
 present,	
 read/writable	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 $512,%ecx	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Number	
 of	
 pages	
 in	
 PT	
 level	

paging.4:	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 %ebx,(%edi)	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Set	
 present,	
 read/writable	

	
 	
 	
 	
 	
 	
 	
 	
 addl	
 $0x1000,%ebx	
 	
 	
 	
 	
 	
 	
 	
 #	
 Next	
 4096	
 bytes	

	
 	
 	
 	
 	
 	
 	
 	
 addl	
 $8,%edi	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Next	
 page	
 entry	

	
 	
 	
 	
 	
 	
 	
 	
 loop	
 paging.4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 For	
 each	
 page	
 entry	

paging.5:	

	

Recursive.Paging:	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #Recursive	
 paging	
 is	
 set	
 up	
 here	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 $PML4T,	
 %eax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #Move	
 phys	
 address	
 of	
 PML4T	
 into	
 eax	

	
 	
 	
 	
 	
 	
 	
 	
 addl	
 $0x1000,	
 %eax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #Add	
 Page	
 Size	
 to	
 move	
 to	
 end	
 of	
 PML4T	

	
 	
 	
 	
 	
 	
 	
 	
 subl	
 $0x8,	
 %eax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #Subtract	
 to	
 move	
 to	
 last	
 entry	
 of	
 PML4T	

	

	
 167	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 $PML4T,	
 %ebx	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #Move	
 Phys	
 address	
 of	
 PML4T	
 into	
 ebx	

	
 	
 	
 	
 	
 	
 	
 	
 addl	
 $0x3,	
 %ebx	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #Add	
 page	
 permission	
 bits	
 Page	
 Present,	
 read/write	

	

	
 	
 	
 	
 	
 	
 	
 	
 mov	
 %ebx,	
 (%eax)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #Do	
 the	
 mapping	
 into	
 last	
 entry	
 of	
 PML4T	

	

	
 	
 	
 	
 	
 	
 	
 	
 ##Turn	
 on	
 paging	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 %cr0,%eax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Control	
 Register	
 4	
 to	
 %eax	

	
 	
 	
 	
 	
 	
 	
 	
 orl	
 $0x80000000,%eax	
 	
 	
 	
 	
 #	
 Enable	
 paging	

	
 	
 	
 	
 	
 	
 	
 	
 movl	
 %eax,%cr0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 %eax	
 to	
 Control	
 Register	
 4	

	
 	
 	
 	
 	
 	
 	
 	
 lgdt	
 gdtlong_48	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Load	
 long-­‐mode	
 gdt	

	
 	
 	
 	
 	
 	
 	
 	
 ljmp	
 $SEL_LCODE,$long	
 	
 	
 	
 #	
 Enter	
 long	
 mode	

	
 	
 	
 	
 	
 	
 	
 	
 .code64	

long:	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 	
 Welcome	
 to	
 long	
 mode.	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 As	
 above,	
 reload	
 the	
 segment	
 registers.	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 $0x10,%ax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Set	
 segment	
 selectors	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%ds	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 data	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%ss	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 stack	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%es	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 es	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%fs	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 fs	

	
 	
 	
 	
 	
 	
 	
 	
 movw	
 %ax,%gs	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 gs	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Enable	
 SSE	
 (required	
 for	
 stuff	
 like	
 clang	
 varargs),	
 and	
 other	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 things	
 that	
 should	
 be	
 turned	
 on.	

	
 	
 	
 	
 	
 	
 	
 	
 movq	
 %cr0,%rax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Control	
 register	
 4	
 to	
 %eax	

	
 	
 	
 	
 	
 	
 	
 	
 bts	
 $1,%rax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Set	
 MP	
 bit	

	
 	
 	
 	
 	
 	
 	
 	
 btr	
 $2,%rax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Clear	
 EM	
 bit	

	
 	
 	
 	
 	
 	
 	
 	
 bts	
 $5,%rax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Allow	
 native	
 (new)	
 FPU	
 error	
 reporting	

	
 168	

	
 	
 	
 	
 	
 	
 	
 	
 movq	
 %rax,%cr0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 %eax	
 to	
 control	
 register	
 0	

	
 	
 	
 	
 	
 	
 	
 	
 movq	
 %cr4,%rax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Control	
 register	
 4	
 to	
 %eax	

	
 	
 	
 	
 	
 	
 	
 	
 bts	
 $9,%eax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Set	
 OSFXSR	
 bit	

	
 	
 	
 	
 	
 	
 	
 	
 bts	
 $10,%eax	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Set	
 OSXMMEXCPT	
 bit	

	
 	
 	
 	
 	
 	
 	
 	
 movq	
 %rax,%cr4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 %eax	
 to	
 control	
 register	
 4	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 Now	
 let's	
 return	
 to	
 C	
 and	
 be	
 done	
 with	
 this.	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 The	
 boot	
 block	
 base	
 is	
 loaded	
 in	
 as	
 part	
 of	
 the	
 disklabel,	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 and	
 we	
 know	
 the	
 disklabel	
 starts	
 right	
 after	
 us	
 in	
 the	
 code.	

	
 	
 	
 	
 	
 	
 	
 	
 ##	
 So,	
 find	
 the	
 boot	
 block	
 base	
 and	
 jump	
 there.	

	
 	
 	
 	
 	
 	
 	
 	
 movq	
 DLBL_BBASE,%rbx	
 	
 	
 	
 	
 #	
 Boot	
 block	
 base	
 (bytes)	

	
 	
 	
 	
 	
 	
 	
 	
 addq	
 $MEM_DLBL,%rbx	
 	
 	
 	
 	
 	
 #	
 Add	
 start	
 of	
 disk	
 label	

	
 	
 	
 	
 	
 	
 	
 	
 subq	
 $0x200,%rbx	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Subtract	
 the	
 first	
 512	
 bytes	
 (included	
 in	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 	
 disklabel	
 for	
 some	
 reason)	

	
 	
 	
 	
 	
 	
 	
 	
 movq	
 $BOOT_STACK,%rsp	
 	
 	
 	
 #	
 Reset	
 the	
 stack	
 pointer	
 to	
 a	
 value	
 clang	
 likes	

	
 	
 	
 	
 	
 	
 	
 	
 jmp	
 *%rbx	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Into	
 the	
 C	
 entry	
 point	

	

###	
 Fill	
 the	
 rest	
 of	
 the	
 512	
 bytes	
 with	
 NOP	
 and	
 make	
 bootable.	

	
 	
 	
 	
 	
 	
 	
 	
 .org	
 0x1FE,0x90	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Fill	
 the	
 rest	
 with	
 NOPs	

	
 	
 	
 	
 	
 	
 	
 	
 .word	
 MAGIC	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 Bootable	
 magic	

	
 169	

Appendix B – Register Layouts
	

Control Register 0
Bit Label & Description
0 PE – If 1, enables 32-bit protected mode
1 MP – Controls the behavior of wait and fwait instructions
2 EM – Allows saving
3 TS – Allows saving floating point context on hardware switches
4 ET – Reserved for us in older Intel processors
5 NE – If 1, enables internal x87 floating point error reporting
16 WP – If 1, ring 0 code can write to pages marked read only
18 AM – If 1, processor checks alignment on certain operations
29 NW – If 1, disables write-back caching
30 CD – If 1, disables memory caches
31 PG – If 1, enables paging

Control Register 3

Bit Label & Description
0-2 Ignored
3 PWT –
4 PCD –
5-11 Ignored
12-48 Address of PML4 Table
49-63 Reserved for future use

Control Register 4

Bit Label & Description
0 VME – If 1, enables virtual interrupts in virtual-8086 mode
1 PVI – If 1, enables virtual interrupts in protected mode
2 TSD – If 1, only kernel mode can read the hardware timestamp
3 DE – Controls the usage of the debug registers
4 PSE – If 1, enables 4MB pages --- If 0, enables 4KB pages
5 PAE – If 1, enables paging to produce physical addresses greater than 32 bits
6 MCE – If 1, enables machine check exceptions
7 PGE – If 1, allows global pages with special caching properties
8 PCE – If 1, allows user-land code to use performance counters
9 OSFXSR – If 1, enables fxsave and fxstor instructions
10 OSXMMEXCPT – Controls operation of SSE instructions
13 VMXE – If 1, enables VMX instructions
14 SMXE – If 1, enables supervisor mode
16 FSGSBASE – Controls rdsfbase, rdgsbase, wrfsbase, and rfsgsbase instructions
17 PCIDE – If 1, enables process-context identifiers
18 OSXSAVE - Controls operation of xsave, xstor, and xgetbv instructions
20 SMEP – If 1, prevents kernel mode from executing user-mode code
21 SMAP – If 1, prevents kernel mode from accessing user-mode data
22 PKE – IF 1, enables x86-64 paging to associate linear addresses with protection keys

Extended Feature Enable Register MSR

Bit Label & Description
0 SCE – If 1, enable fast system call instructions
8 LME – If 1, enables 64-bit long mode
10 LMA – Indicates if long mode is active
11 NXE – IF 1, enables the use of the no-execute bit in page tables

	
 170	

APPENDIX C – Macros for paging

	
 171	

Appendix D – Paging Structures & Frame Array Initialization C

Code

void	
 setup_table(
 void	
 *phys,	
 void	
 *vaddr,	
 uint64_t	
 flags)	
 {	

	

	
 	
 union	
 pt_entry	
 *entry	
 =	
 (union	
 pt_entry*)vaddr;	

	

	
 	
 kmemset(entry,	
 0,	
 sizeof(union	
 pt_entry));	

	
 172	

	

	
 	
 entry-­‐>present	
 =	
 1;	

	
 	
 entry-­‐>rw	
 =	
 (flags	
 &	
 PG_RW)	
 ?	
 1	
 :	
 0;	

	
 	
 entry-­‐>nx	
 =	
 (flags	
 &	
 PG_NX)	
 ?	
 1	
 :	
 0;	

	
 	
 entry-­‐>us	
 =	
 (flags	
 &	
 PG_USER)	
 ?	
 1	
 :	
 0;	

	
 	
 ((union	
 page*)entry)-­‐>global	
 =	
 (
 flags	
 &	
 PG_GLOBAL	
)	
 ?	
 1	
 :	
 0;	

	
 	
 entry-­‐>addr	
 =	
 ADDR2TABLE((uint64_t)phys);	

	
 	
 return;	

}	

	

	

void	
 frame_array_init(void)	
 {	

	

	
 	
 struct	
 memmap	
 *block	
 =	
 (struct	
 memmap	
 *)0x804;	

	
 	
 struct	
 memmap	
 *oldblock;	

	
 	
 uint16_t	
 *numblocks	
 =	
 (uint16_t	
 *)x802;	

	
 	
 uint64_t	
 memory_present,	
 frame_position;	
 	

	
 	
 int	
 framearray_pages;	
 	

	
 	
 int	
 i,	
 j;	

	

	
 	
 struct	
 page_map_level_4_table	
 *pml4t;	

	
 	
 struct	
 page_directory_pointer_table	
 *pdpt;	

	
 	
 struct	
 page_directory	
 *pd;	

	
 	
 struct	
 page_table	
 *pt;	

	
 	
 union	
 page	
 *page;	

	

	
 	
 int	
 pml4t_idx;	

	
 173	

	
 	
 int	
 pdpt_idx;	

	
 	
 int	
 pd_idx;	

	
 	
 int	
 pt_idx;	

	
 	
 uint64_t	
 framearray_idx;	

	
 	
 	

	
 	
 int	
 pts,	
 pds,	
 pdpts;	

	

	
 	
 int	
 hole_length;	

	

	
 	
 /**	
 This	
 calculates	
 the	
 total	
 number	
 of	
 bytes	
 available	
 in	
 ram	
 on	
 the	
 	
 system	
 by	
 taking	
 the	
 last	

block	
 base	
 address	
 and	
 adding	
 its	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 length	
 to	
 it.	
 The	
 blocks	
 of	
 memory	
 on	
 the	
 sytem	
 given	
 to	
 us	
 by	
 the	
 bios	
 from	
 boot1.s	
 **/	

	
 	
 memory_present	
 =	
 block[(*numblocks)-­‐1].base	
 +	
 block[(*numblocks)-­‐1].length;	

	

	
 	
 /**	
 set	
 the	
 number	
 of	
 entries	
 that	
 will	
 be	
 in	
 the	
 array	
 */	

	
 	
 frame_array_len	
 =	
 memory_present	
 /	
 PAGE_SIZE;	
 /*Note	
 PAGE_SIZE	
 =	
 0x1000*/	

	

	
 	
 /**	
 find	
 the	
 number	
 of	
 pages	
 needed	
 to	
 store	
 the	
 array	
 */	

	
 	
 framearray_pages	
 =	
 ((memory_present/PAGE_SIZE)	
 *	
 sizeof(struct	
 frame_array_entry_t))	
 /	

PAGE_SIZE;	

	

	
 	
 if((memory_present/PAGE_SIZE)	
 %	
 framearray_pages)	

	
 	
 	
 	
 framearray_pages	
 +=	
 1;	

	

	
 	
 /**	
 add	
 the	
 number	
 of	
 frames	
 that	
 will	
 be	
 needed	
 for	
 paging	
 structs	
 	
 to	
 address	
 the	
 frame	
 array	

*/	

	
 	
 pts	
 =	
 framearray_pages	
 %	
 512	
 ?	
 (framearray_pages	
 /	
 512)	
 +	
 1	
 :	
 framearray_pages	
 /	
 512;	
 	

	
 174	

	
 	
 pts	
 +=	
 1;	
 /*	
 in	
 case	
 it	
 crosses	
 a	
 pt	
 boundary	
 virtually	
 */	

	

	
 	
 pds	
 =	
 pts	
 %	
 512	
 ?	
 (pts	
 /	
 512)	
 +	
 1	
 :	
 pts	
 /	
 512;	

	
 	
 pds	
 +=	
 1;	
 /*	
 in	
 case	
 it	
 crosses	
 a	
 pd	
 boundary	
 virtually	
 */	

	

	
 	
 pdpts	
 =	
 pds	
 %	
 512	
 ?	
 (pds	
 /	
 512)	
 +	
 1	
 :	
 pds	
 /	
 512;	

	
 	
 pdpts	
 +=	
 1;	
 /*	
 in	
 case	
 it	
 crosses	
 a	
 pdpt	
 boundary	
 virtually	
 */	

	
 	

	
 	
 framearray_pages	
 +=	
 pts	
 +	
 pds	
 +	
 pdpts;	
 	

	

/**	
 first,	
 find	
 a	
 block	
 of	
 physical	
 memory	
 suitable	
 for	
 storing	
 the	
 frame	
 array.	
 the	
 first	
 block	
 is	
 not	

suitable	
 bc	
 we've	
 used	
 stuff	
 	
 	
 	
 	
 	
 	
 there	
 already.	
 **/	

	
 	
 block	
 +=	
 1;	

	

	
 	
 for(i	
 =	
 1;	
 i	
 <	
 *numblocks;	
 i++,	
 block++	
)	
 {	

	

	
 	
 	
 	
 if(block-­‐>length	
 ==	
 0)	

	
 	
 	
 	
 	
 	
 continue;	

	

	
 	
 	
 	
 /*	
 if	
 the	
 block	
 is	
 useable	
 &	
 big	
 enough*/	

	
 	
 	
 	
 if	
 (
 (block-­‐>type	
 !=	
 1)	
 ||	
 	
 (block-­‐>length	
 <=	
 (framearray_pages	
 *	
 PAGE_SIZE))	
)	
 	

	
 	
 	
 	
 	
 	
 continue;	

	

	
 	
 	
 	
 frame_position	
 =	
 block-­‐>base;	

	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 /**	
 find	
 out	
 where	
 in	
 the	
 tables	
 we	
 will	
 store	
 the	
 array	
 based	
 on	
 the	
 fixed	
 virtual	
 address	
 given	

**/	

	
 175	

	
 	
 	
 	
 pml4t_idx	
 =	
 virt2pml4t(frame_array_vaddr);	

	
 	
 	
 	
 pdpt_idx	
 =	
 virt2pdpt(frame_array_vaddr);	

	
 	
 	
 	
 pd_idx	
 =	
 virt2pd(frame_array_vaddr);	

	
 	
 	
 	
 pt_idx	
 =	
 virt2pt(frame_array_vaddr);	

	

	
 	
 	
 	
 /**	
 NOTE:	
 For	
 setup	
 tables	
 in	
 this	
 function,	
 we	
 are	
 marking	
 them	
 as	
 executable	
 because	
 this	

table	
 might	
 be	
 used	
 for	
 some	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 executable	
 stuff	
 later	
 on	
 (we	
 don’t	
 know)	
 and	
 we	
 don’t	
 trust	
 later	
 allocators	
 to	
 check	
 this	

top	
 level	
 permissions.	
 marking	
 the	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 as	
 no-­‐execute	
 is	
 sufficient	
 to	
 ensure	
 that	
 the	
 frame	
 array	
 is	
 not	
 executable	
 **/	

	
 	
 	
 	
 	

	
 	
 	
 	
 /*	
 initialize	
 the	
 virtual	
 address	
 */	

	
 	
 	
 	
 pml4t	
 =	
 (struct	
 page_map_level_4_table	
 *)read_cr3();	

	
 	
 	
 	
 if(!(pml4t-­‐>entries[pml4t_idx]).present){	

	
 	
 	
 	
 	
 	
 setup_table(
 (void	
 *)frame_position,	
 PML4TE2vaddr(pml4t_idx),	
 1/*	
 executable	
 */);	

	
 	
 	
 	
 	
 	
 /**then	
 memset	
 the	
 frame	
 for	
 the	
 pdpt	
 ITSELF	
 to	
 zero	
 */	

	
 	
 	
 	
 	
 	
 kmemset(PDPTE2vaddr(pml4t_idx,0),	
 0,	
 PAGE_SIZE);	

	
 	
 	
 	
 	
 	
 frame_position	
 +=	
 PAGE_SIZE;	
 	
 	

	
 	
 	
 	
 }	

	

	
 	
 	
 	
 pdpt	
 =	
 (struct	
 page_directory_pointer_table	
 *)PDPTE2vaddr(pml4t_idx,0);	

	
 	
 	
 	
 if(!(pdpt-­‐>entries[pdpt_idx]).present){	

	
 	
 	
 	
 	
 	
 setup_table(
 (void	
 *)frame_position,	
 PDPTE2vaddr(pml4t_idx,pdpt_idx),	
 1	
 /*	
 executable	
 */);	
 	

	
 	
 	
 	
 	
 	
 kmemset(PDE2vaddr(pml4t_idx,pdpt_idx,0),	
 0,	
 PAGE_SIZE);	

	
 	
 	
 	
 	
 	
 frame_position	
 +=	
 PAGE_SIZE;	

	
 	
 	
 	
 }	

	

	
 176	

	
 	
 	
 	
 pd	
 =	
 (struct	
 page_directory	
 *)PDE2vaddr(pml4t_idx,pdpt_idx,0);	

	
 	
 	
 	
 if(!(pd-­‐>entries[pd_idx]).present){	

	
 	
 	
 	
 	
 	
 setup_table((void	
 *)frame_position,	
 PDE2vaddr(pml4t_idx,pdpt_idx,pd_idx),	
 1	
 /*	
 executable	

*/);	

	
 	
 	
 	
 	
 	
 kmemset(PTE2vaddr(pml4t_idx,pdpt_idx,pd_idx,0),	
 0,	
 PAGE_SIZE);	

	
 	
 	
 	
 	
 	
 frame_position	
 +=	
 PAGE_SIZE;	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 }	

	

	
 	
 	
 	
 /**	
 this	
 loop	
 maps	
 in	
 the	
 frames	
 to	
 store	
 enough	
 pages	
 to	
 contain	
 the	
 frame	
 array	
 **/	

	
 	
 	
 	
 for	
 (
 i	
 =	
 0;	
 i	
 <	
 framearray_pages;	
 i++	
)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 if(pt_idx	
 ==	
 512)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 pt_idx	
 =	
 0;	

	
 	
 	
 	
 	
 	
 	
 	
 pd_idx++;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 if(pd_idx	
 ==	
 512)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 pd_idx	
 =	
 0;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 pdpt_idx++;	

	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if(pdpt_idx	
 ==	
 512)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 pdpt_idx	
 =	
 0;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 pml4t_idx++;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if(pml4t_idx	
 ==	
 511)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 printf("Not	
 enough	
 virtual	
 memory	
 to	
 cover	
 the	
 largest	
 block!");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 panic();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 177	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /**add	
 a	
 new	
 pdpt	
 to	
 the	
 pml4t	
 **/	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 setup_table(
 (void	
 *)frame_position,	
 PML4TE2vaddr(pml4t_idx),	
 PG_RW);	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /**then	
 memset	
 the	
 frame	
 for	
 the	
 pdpt	
 ITSELF	
 to	
 zero	
 */	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 kmemset(PDPTE2vaddr(pml4t_idx,0),	
 0,	
 PAGE_SIZE);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 frame_position	
 +=	
 PAGE_SIZE;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }//pdpt's	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /**	
 add	
 a	
 new	
 pdt	
 to	
 the	
 pdpt	
 */	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 setup_table(
 (void	
 *)frame_position,	
 PDPTE2vaddr(pml4t_idx,pdpt_idx),	
 PG_RW);	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 kmemset(PDE2vaddr(pml4t_idx,pdpt_idx,0),	
 0,	
 PAGE_SIZE);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 frame_position	
 +=	
 PAGE_SIZE;	

	
 	
 	
 	
 	
 	
 	
 	
 }//pd's	

	

	
 	
 	
 	
 	
 	
 	
 	
 /**	
 add	
 a	
 new	
 pt	
 to	
 the	
 pdt	
 */	

	
 	
 	
 	
 	
 	
 	
 	
 setup_table((void	
 *)frame_position,	
 PDE2vaddr(pml4t_idx,pdpt_idx,pd_idx),	
 PG_RW);	
 	

	
 	
 	
 	
 	
 	
 	
 	
 kmemset(PTE2vaddr(pml4t_idx,pdpt_idx,pd_idx,0),	
 0,	
 PAGE_SIZE);	

	
 	
 	
 	
 	
 	
 	
 	
 frame_position	
 +=	
 PAGE_SIZE;	

	
 	
 	
 	
 	
 	
 }//pt's	
 	

	

	
 	
 	
 	
 	
 	
 /**	
 finally	
 attach	
 the	
 frames	
 to	
 actual	
 pt's	
 */	

	
 	
 	
 	
 	
 	
 setup_table((void	
 *)frame_position,	
 PTE2vaddr(pml4t_idx,pdpt_idx,pd_idx,	
 pt_idx),	
 PG_RW	
 |	

PG_NX	
 |	
 PG_GLOBAL	
);	

	
 	
 	
 	
 	
 	
 frame_position	
 +=	
 PAGE_SIZE;	

	
 	
 	
 	
 	
 	
 pt_idx++;	

	
 	
 	
 	
 }//for	
 loop	
 on	
 framearray_pages	
 	
 	
 	
 	
 	

	

	
 178	

	
 	
 	
 	
 /*	
 we	
 found	
 our	
 good	
 block	
 and	
 finished	
 initialization:	
 break!	
 */	

	
 	
 	
 	
 break;	
 	
 	

	

	
 	
 }	
 //	
 blocks	
 for	
 loop	

	

	
 	
 /**	
 now	
 actually	
 populate	
 the	
 array	
 **/	

	
 	
 framearray	
 =	
 (struct	
 frame_array_entry_t*)frame_array_vaddr;	

	

	
 	
 framearray_idx	
 =	
 0;	

	
 	
 block	
 =	
 (struct	
 memmap	
 *)0x804;	

	
 	
 for(
 i	
 =	
 0;	
 i	
 <	
 *numblocks;	
 i++	
)	
 {	

	

	
 	
 	
 	
 for	
 (
 j	
 =	
 0	
 ;	
 j	
 <	
 block-­‐>length/PAGE_SIZE;	
 j++	
)	
 {	

	
 	
 	
 	
 	
 	
 if	
 (
 block-­‐>type	
 ==	
 0x1	
)	
 	

	
 	
 	
 	
 	
 	
 	
 	
 framearray[framearray_idx].free	
 =	
 0x1;	

	
 	
 	
 	
 	
 	
 else	
 	

	
 	
 	
 	
 	
 	
 	
 	
 framearray[framearray_idx].free	
 =	
 0x0;	

	

	
 	
 	
 	
 	
 	
 framearray[framearray_idx++].type	
 =	
 block-­‐>type;	

	
 	
 	
 	
 }	

	

	
 	
 	
 	
 /**	
 increment	
 to	
 next	
 block	
 */	

	
 	
 	
 	
 oldblock	
 =	
 block++;	

	
 	
 	
 	
 	

	
 	
 	
 	
 /**	
 check	
 to	
 see	
 if	
 there	
 is	
 a	
 hole	
 */	

	
 	
 	
 	
 if	
 (
 (oldblock-­‐>length	
 +	
 oldblock-­‐>base)	
 ==	
 block-­‐>base	
)	

	
 	
 	
 	
 	
 	
 continue;	

	
 179	

	
 	
 	
 	
 if	
 (
 i	
 ==	
 (*numblocks	
 -­‐	
 1)	
)	
 /**	
 if	
 this	
 is	
 the	
 last	
 block	
 */	

	
 	
 	
 	
 	
 	
 break;	
 	

	
 	
 	
 	
 	

	
 	
 	
 	
 /**	
 there	
 is	
 a	
 hole...	
 */	

	
 	
 	
 	
 hole_length	
 =	
 (block-­‐>base-­‐(oldblock-­‐>length	
 +	
 oldblock-­‐>base))/PAGE_SIZE;	

	
 	
 	
 	
 for	
 (
 j	
 =	
 0;	
 j	
 <	
 hole_length;	
 j++	
)	
 {	

	

	
 	
 	
 	
 	
 	
 framearray[framearray_idx].free	
 =	
 0x0;	
 /*	
 no	
 hole	
 is	
 free	
 (TWSS)	
 */	

	
 	
 	
 	
 	
 	
 framearray[framearray_idx++].type	
 =	
 0x06;	
 	

	
 	
 	
 	
 }	

	
 	
 }	
 /*	
 end	
 the	
 loop	
 iterating	
 over	
 blocks	
 to	
 populate	
 framearray	
 */	

	

	
 	
 /**	
 Now	
 we	
 want	
 to	
 actually	
 fill	
 the	
 frame	
 array	
 entries	
 with	
 the	
 vaddr	
 that	
 is	
 mapped	
 to	
 the	

frame,	
 so	
 we'll	
 walk	
 the	
 page	
 tables	
 to	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 find	
 currently	
 present	
 mappings	
 **/	

	
 	
 pml4t	
 =	
 (struct	
 page_map_level_4_table*)0x1000;	

	
 	
 for	
 (
 pml4t_idx	
 =	
 0;	
 pml4t_idx	
 <	
 512;	
 pml4t_idx++	
)	
 {	

	

	
 	
 	
 	
 if	
 (
 !pml4t-­‐>entries[pml4t_idx].present	
)	

	
 	
 	
 	
 	
 	
 continue;	

	

	
 	
 	
 	
 for	
 (
 pdpt_idx	
 =	
 0;	
 pdpt_idx	
 <	
 512;	
 pdpt_idx++	
)	
 {	

	

	
 	
 	
 	
 	
 	
 pdpt	
 =	
 (struct	
 page_directory_pointer_table*)PDPTE2vaddr(pml4t_idx,0);	

	
 	
 	
 	
 	
 	
 if	
 (
 !pdpt-­‐>entries[pdpt_idx].present	
)	

	
 	
 	
 	
 	
 	
 	
 	
 continue;	

	

	
 180	

	
 	
 	
 	
 	
 	
 for	
 (
 pd_idx	
 =	
 0;	
 pd_idx	
 <	
 512;	
 pd_idx++	
)	
 {	

	

	
 	
 	
 	
 	
 	
 	
 	
 pd	
 =	
 (struct	
 page_directory*)PDE2vaddr(pml4t_idx,pdpt_idx,0);	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 (
 !pd-­‐>entries[pd_idx].present	
)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 continue;	

	

	
 	
 	
 	
 	
 	
 	
 	
 for	
 (
 pt_idx	
 =	
 0;	
 pt_idx	
 <	
 512;	
 pt_idx++	
)	
 {	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 pt	
 =	
 (struct	
 page_table*)PTE2vaddr(pml4t_idx,	
 pdpt_idx,	
 pd_idx,	
 0);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (
 pt-­‐>entries[pt_idx].present	
)	
 {	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 =	
 (union	
 page	
 *)PTE2vaddr(pml4t_idx,pdpt_idx,pd_idx,	
 pt_idx);	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /*	
 store	
 virtual	
 address	
 and	
 mark	
 as	
 taken	
 */	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 framearray[TABLE2ADDR(page-­‐>addr)/PAGE_SIZE].vaddr	
 =	

idx2vaddr(pml4t_idx,pdpt_idx,pd_idx,pt_idx);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 framearray[TABLE2ADDR(page-­‐>addr)/PAGE_SIZE].free	
 =	
 0x0;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 }	
 /*	
 end	
 pt	
 level	
 loop	
 */	

	
 	
 	
 	
 	
 	
 }	
 /*	
 end	
 pd	
 level	
 loop	
 */	

	
 	
 	
 	
 }	
 /*	
 end	
 pdpt	
 level	
 loop	
 */	
 	

	
 	
 }	
 /*	
 end	
 pml4t	
 level	
 loop	
 */	

	

	
 	
 return;	

}	

	

	
 181	

APPENDIX E – ACPI Structures and APIC Handling Code

	
 182	

void	
 ACPI_Parse_MADT(struct	
 ACPIMADT	
 *madt)	

{	

	
 	
 uint8_t	
 *entry,	
 *end_dt;	

	
 	
 struct	
 APICHeader	
 *header;	

	
 	
 struct	
 APICIOAPICEntry	
 *ioapic;	

	
 	
 struct	
 APICLocalAPICEntry	
 *apic;	

	
 	
 struct	
 APICInterruptOverrideEntry	
 *interruptoverride;	

	

	
 	
 entry	
 =	
 (uint8_t	
 *)madt	
 +	
 sizeof(struct	
 ACPIMADT);	

	
 	
 end_dt	
 =	
 (uint8_t	
 *)madt+madt-­‐>Length;	

	

	
 	
 while(entry	
 <	
 end_dt){	

	
 	
 	
 	
 header	
 =	
 (struct	
 APICHeader	
 *)entry;	

	

	
 	
 	
 	
 if((header-­‐>DeviceType	
 ==	
 0)	
 &&	
 (apic-­‐>flags	
 &	
 0x1)	
 ==	
 1){	

	
 	
 	
 	
 	
 	
 apic	
 =	
 (struct	
 APICLocalAPICEntry*)header;	

	
 	
 	
 	
 	
 	
 /*	
 Found	
 an	
 APIC	
 entry	
 */	

	
 	
 	
 	
 }	

	
 	
 	
 	
 else	
 if(header-­‐>DeviceType	
 ==	
 1){	

	
 	
 	
 	
 	
 	
 ioapic	
 =	
 (struct	
 APICIOAPICEntry*)header;	

	
 	
 	
 	
 	
 	
 /*	
 Found	
 an	
 I/O	
 APIC	
 entry	
 */	

	
 	
 	
 	
 }	

	
 	
 	
 	
 else	
 if(header-­‐>DeviceType	
 ==	
 	
 2){	

	
 	
 	
 	
 	
 	
 interruptoverride	
 =	
 (struct	
 APICInterruptOverrideEntry*)header;	

	
 	
 	
 	
 	
 	
 /*	
 Found	
 an	
 Interrupt	
 Override	
 entry	
 */	

	
 	
 	
 	
 }	

	
 183	

	

	
 	
 	
 	
 entry+=header-­‐>Length;	
 	
 /*	
 move	
 to	
 next	
 entry	
 */	

	
 	
 }	

	
 	
 return;	

}	

	

void	
 ACPI_Parse_Entry(struct	
 ACPIHeader	
 *header)	

{	

	
 	
 const	
 char	
 *apic	
 =	
 "APIC";	

	
 	
 const	
 char	
 *dmar	
 =	
 "DMAR";	

	
 	
 const	
 char	
 *hpet	
 =	
 "HPET";	

	
 	
 const	
 char	
 *mcfg	
 =	
 "MCFG";	

	

	
 	
 if(strncmp(header-­‐>Signature,apic,strlen(apic))==0)	

	
 	
 	
 	
 	
 	
 ACPI_Parse_MADT((struct	
 ACPIMADT	
 *)header);	

	
 	
 else	
 if(strncmp(header-­‐>Signature,dmar,strlen(dmar))==0)	

	
 	
 	
 	
 	
 	
 ACPI_Parse_DMAR((struct	
 ACPIDMAR	
 *)header);	

	
 	
 else	
 if(strncmp(header-­‐>Signature,hpet,strlen(hpet))==0)	

	
 	
 	
 	
 	
 	
 ACPI_Parse_HPET((struct	
 ACPIHeader	
 *)header);	

	

	
 	
 return;	

}	

	

void	
 Scan_ACPI(struct	
 RSDPDescriptor20	
 rsdpdesc)	

{	

	
 	
 struct	
 ACPIHeader	
 *rsdt;	

	
 	
 uint32_t	
 *entry_ptr,	
 *end_rsdt;	

	
 184	

	
 	
 uint32_t	
 address,	
 address_end;	

	

	
 	
 /*	
 identity	
 page	
 the	
 address	
 given	
 by	
 the	
 RSDT,	
 remember	
 page	
 alignment	
 */	

	
 	
 attach_page(rsdpdesc.RsdtAddress	
 &	
 0xFFFFFFF000,rsdpdesc.RsdtAddress	
 &	
 0xFFFFFFF000);	

	

	
 	
 rsdt	
 =	
 (struct	
 ACPIHeader	
 *)(uintptr_t)(rsdpdesc.RsdtAddress);	

	

	
 	
 entry_ptr	
 =	
 (uint32_t*)(rsdt+1);	

	
 	
 end_rsdt	
 =	
 (uint32_t*)(((uint8_t*)rsdt)+rsdt-­‐>Length);	

	
 	
 address	
 =	
 *entry_ptr;	
 /*Start	
 of	
 ACPI	
 tables*/	

	

	
 	
 address_end	
 =	
 *(end_rsdt-­‐1)+0x2000;	
 /*	
 The	
 BIOS	
 has	
 a	
 nasty	
 habit	
 of	
 putting	
 the	
 end	
 off	
 a	

page	
 boundary	
 */	

	

	
 	
 /*	
 	
 	
 	
 First	
 loop	
 we	
 iterate	
 by	
 page	
 size	
 over	
 the	
 entire	
 ACPI	
 table	
 */	

	
 	
 while(address	
 <	
 address_end){	

	
 	
 	
 	
 	
 	
 /*Remember	
 things	
 need	
 to	
 be	
 page	
 aligned	
 to	
 work	
 correctly*/	

	
 	
 	
 	
 	
 	
 /*The	
 BIOS	
 writers	
 won't	
 do	
 it	
 for	
 you*/	

	
 	
 	
 	
 	
 	
 attach_page(address	
 &	
 0xFFFFFFF000,address	
 &	
 0xFFFFFFF000);	

	
 	
 	
 	
 	
 	
 address+=0x1000;	

	
 	
 	
 	
 }	

	

	
 	
 /*	
 Second	
 loop	
 we	
 parse	
 the	
 now	
 mapped	
 in	
 ACPI	
 table	
 */	

	
 	
 while(entry_ptr	
 <	
 end_rsdt)	

	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 address	
 =	
 *entry_ptr;	

	
 	
 	
 	
 	
 	
 ACPI_Parse_Entry((struct	
 ACPIHeader	
 *)(uintptr_t)address);	

	
 185	

	
 	
 	
 	
 	
 	
 entry_ptr++;	

	
 	
 	
 	
 }	

	

	
 	
 	
 	
 return;	

}	

	
 186	

APPENDIX F – Fields and Values for APIC MMIO

	
 187	

Appendix G – Time Stamp Counter (TSC) Handling Code

inline	
 uint64_t	
 readtscp()	
 {	

	
 	
 uint32_t	
 lo,	
 hi;	

	
 	
 asm	
 volatile("rdtscp"	
 :	
 "=a"(lo),	
 "=d"(hi)	
 ::	
 "rcx"	
);	

	
 	
 asm	
 volatile("cpuid");	

	
 	
 return	
 (uint64_t)(lo)	
 |	
 ((uint64_t)(hi)	
 <<	
 32);	

}	

	

inline	
 uint64_t	
 readtsc()	
 {	

	
 	
 uint32_t	
 lo,	
 hi;	

	
 	
 asm	
 volatile("cpuid");	

	
 	
 asm	
 volatile("rdtsc"	
 :	
 "=a"(lo),	
 "=d"(hi)	
 ::	
 "rcx"	
);	

	
 	
 return	
 (uint64_t)(lo)	
 |	
 ((uint64_t)(hi)	
 <<	
 32);	

}	

	

uint64_t	
 get_tsc_freq(){	

	

	
 	
 uint64_t	
 perf_stat_msr,	
 platform_msr,	
 flex_msr;	

	
 	
 uint64_t	
 ratio,	
 flex_ratio_max,	
 flex_ratio_min,	
 flex_ratio_cur;	

	
 	
 uint64_t	
 tsc_freq;	

	

	
 	
 perf_stat_msr	
 =	
 read_msr(0x198);	

	
 	
 platform_msr	
 	
 =	
 read_msr(0xCE);	

	
 	
 flex_msr	
 	
 	
 	
 	
 	
 =	
 read_msr(0x194);	

	

	
 	
 /*per	
 the	
 Intel	
 manuals	
 and	
 various	
 online	
 sites.	
 Bit	
 31	
 of	
 the	
 performance	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 188	

	
 	
 	
 *stats	
 register	
 indicates	
 xe	
 is	
 running	
 if	
 so	
 read	
 the	
 ratio	
 from	
 the	
 perf	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 *stat	
 msr	
 if	
 it's	
 not	
 running	
 the	
 value	
 is	
 in	
 the	
 platform	
 msr	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 */	

	
 	
 if(((perf_stat_msr	
 >>	
 31)	
 &	
 1)){	

	
 	
 	
 	
 ratio	
 =	
 ((perf_stat_msr	
 &	
 0x1F0000000000)	
 >>	
 40);	

	
 	
 }	

	
 	
 else{	

	
 	
 	
 	
 ratio	
 =	
 ((
 platform_msr	
 	
 &	
 0xFF00)	
 >>	
 8);	

	
 	
 }	

	

	
 	
 /*the	
 platform	
 also	
 has	
 the	
 min	
 and	
 max	
 ratios	
 */	

	
 	
 flex_ratio_min	
 =	
 ((platform_msr	
 &	
 0x3F0000000000)	
 >>	
 40);	

	
 	
 flex_ratio_max	
 =	
 ((platform_msr	
 &	
 0xFF00)	
 >>	
 8);	

	
 	
 /*the	
 flex	
 msr	
 is	
 theory	
 has	
 the	
 current	
 ratio	
 */	

	
 	
 flex_ratio_cur	
 =	
 ((flex_msr	
 &	
 0xFF00)	
 >>	
 8);	

	

	
 	
 /*bit	
 16	
 of	
 the	
 flex	
 msr	
 tells	
 us	
 the	
 ratio's	
 can	
 vary!!	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 *however	
 if	
 the	
 lower	
 bits	
 are	
 zero	
 we	
 default	
 to	
 the	
 max	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 *the	
 frequency	
 multiplier	
 is	
 100	
 unless	
 the	
 bios	
 is	
 overclocked	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 */	

	
 	
 if((
 flex_msr	
 >>	
 16)	
 &	
 1){	

	
 	
 	
 	
 if(flex_ratio_cur	
 ==	
 0){	

	
 	
 	
 	
 	
 	
 tsc_freq	
 =	
 flex_ratio_max	
 *	
 100	
 *	
 1000	
 *	
 1000;	

	
 	
 	
 	
 }	

	
 	
 	
 	
 else{	

	
 	
 	
 	
 	
 	
 tsc_freq	
 =	
 flex_ratio_cur	
 *	
 100	
 *	
 1000	
 *	
 1000;	

	
 	
 	
 	
 }	

	
 189	

	
 	
 }	

	
 	
 /*if	
 they’re	
 not	
 flexing	
 then	
 just	
 use	
 the	
 correct	
 ratio	
 from	
 above*/	

	
 	
 else{	

	
 	
 	
 	
 tsc_freq	
 =	
 ratio	
 *	
 1000	
 *	
 1000	
 *	
 100;	

	
 	
 }	

	

	
 	
 return	
 tsc_freq;	

}	

	
 190	

Appendix H – VMEXIT APIC Access Handling Code

static	
 void	
 apic_access_handler(
 vproc_t	
 *vp	
){	

	
 	
 uint64_t	
 qualification,	
 ins_len,	
 vp_RIP;	

	

	
 	
 /*	
 Take	
 care	
 of	
 the	
 fact	
 that	
 we	
 need	
 move	
 past	
 the	
 instruction	
 that	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 caused	
 a	
 vmexit	
 in	
 the	
 first	
 place.	
 In	
 this	
 case	
 it	
 is	
 the	
 size	
 of	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 an	
 apic	
 access	
 */	

	
 	
 vmread(VM_EXIT_INSTRUCTION_LEN,	
 &ins_len);	

	
 	
 vmread(GUEST_RIP,	
 &vp_RIP);	

	
 	
 vmwrite(GUEST_RIP,	
 vp_RIP	
 +	
 ins_len);	

	

	
 	
 /*Table	
 27-­‐6	
 in	
 the	
 vmexit	
 section	
 chapter	
 27	
 of	
 the	
 intel	
 manual	
 describes*/	

	
 	
 /*The	
 qualification	
 field	
 is	
 where	
 this	
 information	
 is	
 populated	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 */	

	
 	
 /*the	
 access	
 type	
 that	
 caused	
 a	
 vmexit.	
 0x0000	
 =	
 read,	
 0x1000	
 =	
 write,	
 	
 	
 	
 	
 */	

	
 	
 /*others	
 are	
 not	
 currently	
 handled	
 	
 	
 	
 	
 	
 	
 	
 ^	
 (read	
 bit)	
 	
 	
 ^	
 (write	
 bit)	
 	
 	
 	
 	
 */	

	
 	
 vmread(EXIT_QUALIFICATION,	
 &qualification);	

	

	
 	
 /*	
 For	
 now	
 we	
 assume	
 the	
 guest	
 has	
 complete	
 control	
 of	
 the	
 core	
 it	
 is	
 	
 	
 	
 	
 	
 */	

	
 	
 /*	
 configuring.	
 Thus,	
 while	
 we	
 are	
 catching	
 what	
 the	
 guest	
 would	
 like	
 to	
 do*/	

	
 	
 /*	
 we	
 do	
 not	
 restrict	
 what	
 the	
 guest	
 is	
 doing.	
 Some	
 checks	
 should	
 be	
 added	
 */	

	
 	
 /*	
 to	
 prevent	
 potential	
 out	
 of	
 bounds	
 behaviour,	
 but	
 the	
 main	
 push	
 for	
 this*/	

	
 	
 /*	
 is	
 motivated	
 by	
 the	
 drive	
 to	
 give	
 the	
 guest	
 complete	
 control	
 of	
 the	
 core*/	

	
 	
 /*	
 it	
 is	
 using.	
 We	
 are	
 not	
 enabling	
 external	
 interrupt	
 exiting	
 and	
 we	
 are	
 	
 */	

	
 	
 /*	
 leaving	
 the	
 exception	
 bitmap	
 zeroed	
 out.	
 This	
 allows	
 the	
 guest	
 IDT	
 to	
 	
 	
 */	

	
 	
 /*	
 handle	
 all	
 of	
 the	
 interrupts	
 it	
 is	
 receiving.	
 This	
 is	
 also	
 a	
 performance*/	

	
 	
 /*	
 improvment	
 as	
 we	
 skip	
 coming	
 into	
 the	
 hypervisor	
 for	
 timer	
 interrupts.	
 	
 */	

	
 191	

	
 	
 /*	
 The	
 only	
 real	
 emulation	
 we	
 should	
 see	
 here	
 is	
 the	
 aknowledgment	
 of	
 EOI,	
 */	

	
 	
 /*	
 but	
 we	
 should	
 be	
 able	
 to	
 elimintate	
 that	
 with	
 incoming	
 intel	
 updates.	
 	
 	
 */	

	
 	
 if((qualification	
 &	
 0x1000)	
 ==	
 0x1000){	

	

	
 	
 	
 	
 if((qualification	
 &	
 0xfff)	
 ==	
 APIC_ICRL){	

	

	
 	
 	
 	
 	
 	
 /*	
 If	
 it	
 is	
 an	
 init	
 signal	
 start	
 the	
 count	
 for	
 joining	
 a	
 core*/	

	
 	
 	
 	
 	
 	
 if(
 vp-­‐>reg_storage.rsi	
 ==	
 APIC_INIT){	

	
 	
 	
 	
 	
 	
 	
 	
 count_startup_ipis++;	

	
 	
 	
 	
 	
 	
 }/*	
 We	
 received	
 a	
 SIPI	
 count	
 the	
 first*/	

	
 	
 	
 	
 	
 	
 else	
 if(
 (vp-­‐>reg_storage.rsi	
 &	
 0xf00)	
 ==	
 APIC_STARTUP){	

	
 	
 	
 	
 	
 	
 	
 	
 count_startup_ipis++;	

	

	
 	
 	
 	
 	
 	
 	
 	
 /*Second	
 SIPI	
 received	
 time	
 to	
 join	
 a	
 core	
 to	
 the	
 guest	
 */	

	
 	
 	
 	
 	
 	
 	
 	
 if(count_startup_ipis	
 ==	
 3){	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 count_startup_ipis	
 =	
 0;	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /*IPI's	
 don't	
 have	
 a	
 lot	
 of	
 room	
 for	
 data.	
 So,	
 we	
 use	
 a	
 global	
 	
 */	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /*vproc	
 pointer	
 to	
 keep	
 track	
 of	
 who	
 we	
 are	
 joining	
 to	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 */	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 SIPI_vp	
 =	
 vp;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /*send	
 the	
 ipi	
 to	
 the	
 guest	
 the	
 core	
 wants	
 to	
 start	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 */	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /*This	
 is	
 neat	
 as	
 we	
 can	
 read	
 the	
 previous	
 ICRH	
 write	
 to	
 find	
 */	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /*out	
 who	
 we	
 are	
 trying	
 to	
 message	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 */	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 send_ipi((lapic_read(APIC_ICRH)	
 >>	
 24),	
 HYPV_PSEUDO_SIPI);	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /*wait	
 for	
 the	
 core	
 we	
 are	
 starting	
 to	
 acknowledge	
 the	
 IPI	
 	
 	
 	
 	
 	
 */	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 while(lapic_read(APIC_ICRL)	
 &	
 APIC_DELIVS);	

	
 192	

	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 }	

	
 	
 	
 	
 else{/*write	
 everything	
 else	
 to	
 the	
 APIC*/	

	
 	
 	
 	
 	
 	
 lapic_write((qualification	
 &	
 0xfff),	
 vp-­‐>reg_storage.rsi);	

	
 	
 	
 	
 }	

	
 	
 }	
 	
 /*else	
 if	
 reads	
 are	
 harmless*/	

	
 	
 else	
 if((qualification	
 &	
 0x1000)	
 ==	
 0x0000){	

	
 	
 	
 	
 vp-­‐>reg_storage.rax	
 =	
 lapic_read((qualification	
 &	
 0xfff));	

	
 	
 }	

	
 	
 else{/*	
 else	
 disaster	
 strikes	
 */	

	
 	
 	
 	
 printf("[HYPV	
 APIC]	
 unknown	
 APIC	
 access	
 caught\n");	

	
 	
 	
 	
 panic();	

	
 	
 }	

	
 	
 restore_gpregs(vp);	

	
 	
 launch_vproc(vp);	

	

	
 	
 return;	

}	

	

	

	

	
 	

	
 193	

Appendix I – Utility Virtual Machine Queue Code

static	
 void	
 *util_msgq;	
 /*	
 the	
 utility	
 vm	
 message	
 queue	
 */	

	

/*	
 initialized	
 the	
 utility	
 vm	
 message	
 queue	
 */	

void	
 init_util_msg_queue(void){	

	
 	
 util_msgq	
 =	
 qopen();	

	
 	
 return;	

}	

	

/*	
 This	
 just	
 adds	
 a	
 utility	
 vm	
 core	
 	
 message	
 to	
 the	
 utility	
 message	
 queue	
 */	

void	
 add_util_msg(Util_msg_t*	
 msg){	

	
 	
 qput(util_msgq,	
 msg);	

	
 	
 return;	

}	

	

	

/*	
 The	
 helper	
 function	
 for	
 now	
 will	
 only	
 be	
 called	
 when	
 another	
 core	
 sends	
 	
 */	

/*	
 an	
 interrupt	
 to	
 a	
 core	
 that	
 lets	
 the	
 other	
 core	
 know	
 it	
 has	
 a	
 message	
 in	
 	
 */	

/*	
 the	
 hypervisor.	
 Thus,	
 if	
 the	
 util_message	
 queue	
 or	
 core	
 number	
 are	
 NULL	
 	
 */	

/*	
 a	
 catastrophic	
 error	
 has	
 occurred.	
 This	
 function	
 just	
 pulls	
 the	
 first	
 	
 	
 	
 */	

/*	
 found	
 message	
 belonging	
 to	
 a	
 specific	
 core	
 from	
 the	
 util	
 message	
 queue.	
 	
 */	

static	
 int	
 core_msg_cmp(void*	
 msg,	
 const	
 void*	
 core_number){	

	

	
 	
 if	
 (msg	
 ==	
 NULL){	

	
 	
 	
 	
 kprintf("NULL	
 util_msg_t	
 given	
 to	
 core_msgcmp\n");	

	
 	
 	
 	
 panic();	

	
 194	

	
 	
 }	

	

	
 	
 if	
 (core_number	
 ==	
 NULL){	

	
 	
 	
 	
 kprintf("NULL	
 core_number	
 given	
 to	
 core_msgcmp\n");	

	
 	
 	
 	
 panic();	

	
 	
 }	

	

	
 	
 return	
 (
 (((Util_msg_t*)msg)-­‐>core_dst)	
 ==	
 (*(uint32_t*)core_number)	
);	

}	

	

/*	
 a	
 core	
 in	
 the	
 hypervisor	
 will	
 call	
 this	
 function	
 to	
 retrieve	
 a	
 message	
 	
 	
 */	

/*	
 from	
 the	
 utility	
 message	
 queue.	
 It	
 will	
 only	
 return	
 messages	
 that	
 belong	
 */	

/*	
 to	
 that	
 specific	
 core,	
 because	
 this_cpu	
 returns	
 core	
 specific	
 APIC	
 ID	
 	
 	
 	
 */	

Util_msg_t*	
 remove_util_msg(void){	

	
 	
 uint32_t	
 core_id	
 =	
 this_cpu();	

	
 	
 Util_msg_t*	
 ret;	

	

	
 	
 ret	
 =	
 (Util_msg_t*)qremove(util_msgq,	
 &core_msg_cmp,	
 &core_id);	

	
 	
 /*	
 Since	
 the	
 other	
 core	
 is	
 sending	
 an	
 ipi	
 to	
 the	
 core	
 that	
 will	
 call	
 this	
 	
 shouldn’t	
 happen*/	

if(ret	
 ==	
 NULL){	

	
 	
 	
 	
 kprintf("core	
 does	
 not	
 have	
 a	
 message	
 waiting	
 for	
 it	
 PANIC\n");	

	
 	
 	
 	
 panic();	

	
 	
 }	

	

return	
 ret;	

}	

	
 195	

Bibliography
[1]	
 Paul	
 Barham	
 et	
 al.,	
 "Xen	
 and	
 the	
 Art	
 of	
 Virtualization,"	
 in	
 ACM	

Smposium	
 on	
 Operating	
 Systems	
 Principles,	
 2003,	
 pp.	
 164-­‐177.	

[2]	
 Robert	
 P.	
 Goldberg,	
 "A	
 Survey	
 of	
 Virtual	
 Machine	
 Research,"	
 in	

Computer,	
 vol.	
 7,	
 1974,	
 pp.	
 34-­‐45.	

[3]	
 Robert	
 Denz	
 and	
 Stephen	
 Taylor,	
 "A	
 Survey	
 on	
 Securing	
 the	
 Virtual	

Cloud,"	
 The	
 Jorunal	
 of	
 Cloud	
 Computing,	
 vol.	
 2,	
 no.	
 1,	
 pp.	
 1-­‐9,	
 2013.	

[4]	
 VMWare,	
 "Virtualization	
 Overview,"	
 Vmware,	
 Inc.,	
 Palo	
 Alto,	
 White	

Paper	
 2006.	
 [Online].	

http://www.vmware.com/pdf/virtualization.pdf	

[5]	
 Intel,	
 Intel®	
 64	
 and	
 IA-­‐32	
 Architectures	
 Software	
 Developer’s	
 Manual.	

U.S.:	
 Intel,	
 2015.	

[6]	
 Roberto	
 Paleari,	
 Lorenzo	
 Martignoni,	
 Roglia	
 Giampaolo,	
 and	
 Danilo	

Bruschi,	
 "A	
 Firstful	
 of	
 red-­‐pills:	
 how	
 to	
 automatically	
 generate	

procedures	
 to	
 detect	
 CPU	
 emulators,"	
 in	
 USENIX	
 conference	
 on	

Offensive	
 Technologies,	
 vol.	
 3rd,	
 2009.	

[7]	
 Peter	
 Ferrie,	
 "Attacks	
 on	
 More	
 Virtual	
 Machine	
 Emulators,"	
 in	

Symantec	
 Technology	
 Exchange,	
 2007,	
 pp.	
 1-­‐17.	

[8]	
 Niall	
 Fitzgibbon	
 and	
 Mike	
 Wood,	
 "Conficker.C	
 A	
 Technical	
 Analysis,"	

Sophos	
 Labs	
 Inc.,	
 White	
 Paper	
 2009.	

[9]	
 Danny	
 Quist	
 and	
 Val	
 Smith,	
 "Detecting	
 the	
 Prescence	
 of	
 Virtual	

Machines	
 Using	
 Local	
 Data,"	
 in	
 Offesnive	
 Computing,	
 2006.	

[10]	
 Joanna	
 Rutowski,	
 "Red	
 Pill.	
 or	
 how	
 to	
 detect	
 VMM	
 using	
 (almost)	
 one	

CPU	
 instruction,"	
 ,	
 2004.	

[11]	
 Amani	
 Ibrahim,	
 James	
 Hamlyn-­‐Harris,	
 and	
 John	
 Grundy,	
 "Emerging	

Security	
 Challenges	
 of	
 Cloud	
 Virtual	
 Infrastructure,"	
 in	
 APSEC	
 Cloud	

Workshop,	
 2010.	

[12]	
 Manuel	
 Corregedor	
 and	
 Sebastian	
 Von	
 Solms,	
 "Implementing	
 Rootkits	

to	
 Address	
 Operating	
 System	
 Vulnerabilities,"	
 in	
 Information	
 Security	

South	
 Africa,	
 2011.	

[13]	
 E.	
 Buchanan,	
 R	
 Roemer,	
 S.	
 Savage,	
 and	
 H.	
 Shacham,	
 "Return-­‐	
 Oriented	

Programming:	
 Exploitation	
 without	
 Code	
 Injection,"	
 in	
 Black	
 Hat,	

	
 196	

2008.	

[14]	
 H.	
 Shacham,	
 "The	
 geometry	
 of	
 innocent	
 flesh	
 on	
 the	
 bone:	
 Return-­‐	

into-­‐libc	
 without	
 function	
 calls	
 (on	
 the	
 x86),"	
 in	
 ACM	
 Conference	
 on	

Computer	
 and	
 Communications	
 Security,	
 New	
 York,	
 2007,	
 pp.	
 552-­‐561.	

[15]	
 R.	
 Hund,	
 T.	
 Holz,	
 and	
 F.C.	
 Freiling,	
 "Return-­‐oriented	
 rootkits:	

Bypassing	
 kernel	
 code	
 integrity	
 protection	
 mechanisms,"	
 in	
 USENIX	

Security	
 Symposium,	
 2009,	
 pp.	
 383-­‐398.	

[16]	
 Serdar	
 Cabuk,	
 Chris	
 Dalton,	
 Aled	
 Edwards,	
 and	
 Anna	
 Fischer,	
 "A	

Comparative	
 Study	
 on	
 Secure	
 Network	
 Virtualization,"	
 HP	

Laboratories,	
 Technical	
 Report	
 HPL-­‐2008-­‐57	
 ,	
 2008.	

[17]	
 Marco	
 De	
 Vivo,	
 Gabriela	
 De	
 Vivo,	
 and	
 Germinal	
 Isern,	
 "Internet	

Security	
 Attacls	
 at	
 the	
 Basic	
 Levels,"	
 in	
 ACM	
 SIGOPS	
 Operating	
 System	

Review,	
 vol.	
 32,	
 1998,	
 pp.	
 4-­‐15.	

[18]	
 Peter	
 Chen	
 and	
 Brian	
 Noble,	
 "When	
 Virtual	
 is	
 Better	
 Than	
 Real,"	
 in	
 Hot	

Topic	
 in	
 Operating	
 Systems	
 Workshop,	
 vol.	
 8th,	
 2001.	

[19]	
 Sina	
 Bahram	
 et	
 al.,	
 "DKSM:	
 Subverting	
 Virtual	
 Machine	
 Introspection	

for	
 Fun	
 and	
 Profit,"	
 in	
 Symposium	
 on	
 Reliable	
 Distributed	
 Systems,	
 vol.	

29th,	
 2010.	

[20]	
 Greg	
 Hoglund	
 and	
 James	
 Butler,	
 Rootkits:	
 Subverting	
 the	
 Windows	

Kernel,	
 1st	
 ed.:	
 Addison-­‐Wesley	
 Professional,	
 2005.	

[21]	
 Neal	
 Leavitt,	
 "Is	
 Cloud	
 Computing	
 Really	
 Ready	
 for	
 Prime	
 Time?,"	
 in	

Computer,	
 vol.	
 42,	
 2011,	
 pp.	
 15-­‐20.	

[22]	
 Goordon	
 E.	
 Moore,	
 "Cramming	
 more	
 Component	
 onto	
 Integrated	

Circuits,"	
 Electronics,	
 vol.	
 38,	
 no.	
 8,	
 April	
 1965.	

[23]	
 Ofri	
 Wechsler,	
 "Inside	
 Intel	
 Core	
 Microarchitecture,"	
 Intel,	
 White	

Paper	
 2006.	

[24]	
 Gil	
 Neiger,	
 Amy	
 Santoni,	
 Felix	
 Leung,	
 Dion	
 Rodgers,	
 and	
 Rich	
 Uhlig,	

"Intel	
 ®	
 Virtualization	
 Technology:	
 Hardware	
 Support	
 for	
 Efficient	

Processo	
 r	
 Virtualization,"	
 Intel	
 Technology	
 Journal,	
 vol.	
 10,	
 no.	
 3,	
 pp.	

167-­‐178,	
 2006.	

[25]	
 C.	
 Nichols,	
 "Bear	
 -­‐	
 a	
 Resilient	
 Core	
 for	
 Tactical	
 Systems,"	
 in	
 MILCOM,	

Nov.	
 2013,	
 pp.	
 1416-­‐1421.	

	
 197	

[26]	
 Jorrit	
 Herder,	
 Herbert	
 Bos,	
 Ben	
 Gras,	
 Philip	
 Homburd,	
 and	
 Andrew	

Tanenbaum,	
 "MINIX	
 3:	
 a	
 highly	
 reliable,	
 self-­‐repairing	
 operating	

system,"	
 in	
 ACM	
 SIGOPS	
 Operating	
 Systems	
 Review,	
 vol.	
 40,	
 New	
 York,	

2006,	
 pp.	
 80-­‐89.	

[27]	
 R.	
 K.	
 Pandey	
 and	
 Vinay	
 Tiwari,	
 "Reliability	
 Issues	
 in	
 Open	
 Source	

Software,"	
 in	
 International	
 Journal	
 of	
 Computer	
 Applications,	
 vol.	
 34,	

2011.	

[28]	
 Martin	
 Osterloh,	
 Robert	
 Denz,	
 and	
 Stephen	
 Taylor,	
 "Diversified-­‐NFS,"	

in	
 2nd	
 International	
 Conference	
 on	
 Cloud	
 Security	
 Management	

(ICCSM),	
 Reading,	
 2014.	

[29]	
 Fernando	
 J.	
 Corbató	
 and	
 Victor	
 A.	
 Vyssotsky,	
 "Introduction	
 and	

Overview	
 of	
 the	
 Multics	
 system,"	
 in	
 Join	
 Computer	
 Conference	
 ACM,	

vol.	
 part	
 I,	
 1965.	

[30]	
 Scott	
 Brookes,	
 Robert	
 Denz,	
 Martin	
 Osterloh,	
 and	
 Stephen	
 Taylor,	

"ExOShim:	
 Preventing	
 Memory	
 Disclosure	
 using	
 Execute-­‐Only	
 Kernel	

Code,"	
 in	
 Submitted	
 to	
 ICCWS,	
 2016.	

[31]	
 Scott	
 Brookes,	
 Martin	
 Osterloh,	
 Robert	
 Denz,	
 and	
 Stephen	
 Taylor,	

"The	
 KPLT:	
 The	
 Kernel	
 as	
 a	
 shared	
 Object,"	
 in	
 In	
 Proceedings	
 of	

MILCOM,	
 2015.	

[32]	
 Tanenbaum	
 and	
 Woodhull,	
 Operating	
 Systems:	
 Design	
 and	

Implementation.:	
 Prentice	
 Hall,	
 2006.	

[33]	
 The	
 MPI	
 Forum,	
 "MPI:	
 A	
 Message	
 Passing	
 Interface,	
 version	
 2.2.,"	

University	
 of	
 Tennesse,	
 Knoxville,	
 Specification	
 2009.	

[34]	
 Alan	
 Heirich	
 and	
 Stephen	
 Taylor,	
 "A	
 Parabolic	
 Load	
 Balancing	

Method,"	
 IEEE	
 Transactions	
 on	
 Parallel	
 and	
 Distributed	
 Systems,	
 vol.	
 9,	

pp.	
 235-­‐248,	
 1998.	

[35]	
 Chuck	
 Lever	
 and	
 Chuck	
 Boreham,	
 "malloc()	
 Performance	
 in	
 a	

Multithreaded	
 Linux	
 Environment	
 ,"	
 in	
 USENIX	
 Annual	
 Technical	

Conference,	
 San	
 Diego,	
 2000,	
 pp.	
 55-­‐56.	

[36]	
 AIM	
 Independent	
 Resource	
 Benchmark.	
 (2013,	
 February)	

sourceforge.	
 [Online].	
 http://sourceforge.net/projects/aimbench/	

[37]	
 Al	
 Daniel,	
 "CLOC	
 -­‐	
 Count	
 Lines	
 of	
 Code,"	
 Software	
 2016.	

	
 198	

[38]	
 Robert	
 Denz	
 and	
 Stephen	
 Taylor,	
 "Securing	
 the	
 Cloud	
 Through	
 Utility	

Virtual	
 Machines,"	
 in	
 IMCIC:	
 Complexity,	
 Informatics,	
 and	
 Cybernetics,	

vol.	
 1,	
 Orlando,	
 2016,	
 pp.	
 187-­‐192.	

[39]	
 Gerwin	
 Klein	
 et	
 al.,	
 "seL4:	
 Formal	
 Verication	
 of	
 an	
 OS	
 Kernel,"	
 in	
 ACM	

Symposium	
 on	
 Operating	
 Systems	
 Principles,	
 2009.	

[40]	
 Gordon	
 Lyon,	
 "NMAP	
 Network	
 Scanning:	
 The	
 Official	
 NMAP	
 Project	

Guide	
 to	
 Network	
 Discovery	
 and	
 Security	
 Scanning,"	
 ,	
 2009.	

[41]	
 D.	
 Kennedy,	
 J.	
 O'Gorman,	
 D.	
 Kearns,	
 and	
 M.	
 Aharoni,	
 Metasploit:	
 The	

Penetration	
 Testers	
 Guide,	
 1st	
 ed.:	
 No	
 Starch	
 Press,	
 2011.	

[42]	
 L.	
 Davi,	
 A.	
 Dmitrienko,	
 AR.	
 Sadeghi,	
 and	
 M.	
 Winandy,	
 "Privlilage	

Escalation	
 Attacks	
 on	
 Android,"	
 Information	
 Security	
 Journal,	
 Springer,	

2011.	

[43]	
 Brancik	
 Kenneth,	
 Insider	
 computer	
 fraud:	
 an	
 in-­‐depth	
 framework	
 for	

detecting	
 and	
 defending	
 against	
 insider	
 IT	
 attacks,	
 1st	
 ed.:	
 CRC	
 Press,	

2007.	

[44]	
 Scott	
 Campbell,	
 "How	
 to	
 think	
 about	
 security	
 failure,"	
 Communications	

of	
 the	
 ACM,	
 vol.	
 49,	
 no.	
 1,	
 pp.	
 37-­‐39,	
 2006.	

[45]	
 David	
 Cross	
 and	
 Edmund	
 McGarrel,	
 Enhancing	
 security	
 throughout	
 the	

supply	
 chain,	
 1st	
 ed.	
 Washington	
 DC:	
 IBM	
 Center	
 for	
 the	
 Business	
 of	

Government,	
 2004.	

[46]	
 Allen	
 Householder,	
 Kevin	
 Houle,	
 and	
 Chad	
 Dougherty,	
 "Computer	

Attack	
 Trends	
 Challenge	
 Internet	
 Security,"	
 (Supplement	
 to	
 Computer	

Magazine),	
 vol.	
 4,	
 pp.	
 5-­‐7,	
 2002.	

[47]	
 Chris	
 Eagle,	
 The	
 IDA	
 Pro	
 Book,	
 1st	
 ed.:	
 No	
 Starch	
 Press,	
 2005.	

[48]	
 Eldad	
 Eilam,	
 Reversing,	
 1st	
 ed.:	
 Wiley,	
 2005.	

[49]	
 J.E.	
 Forrester	
 and	
 B.P.	
 Miller,	
 "An	
 Empirical	
 Study	
 of	
 the	
 Robustness	
 of	

Windows	
 NT	
 Applications	
 Using	
 Random	
 Testing,"	
 in	
 USENIX	

Windows	
 Systems	
 Sumposium,	
 2000.	

[50]	
 Stephen	
 Checkoway	
 et	
 al.,	
 "Can	
 DREs	
 Provide	
 Long-­‐Lasting	
 Security?	

The	
 Case	
 of	
 Return-­‐Oriented	
 Programming	
 and	
 the	
 AVC	
 Advantage,"	

in	
 USENIX/ACCURATE/IAVoSS	
 Electronic	
 Voting	
 Technology	
 Workshop,	

2009.	

	
 199	

[51]	
 Dorothy	
 Denning,	
 "An	
 Intrusion-­‐Detection	
 Model,"	
 in	
 IEEE	

Transactions	
 on	
 Software	
 Engineering	
 ,	
 vol.	
 SE-­‐13	
 Issue	
 2	
 ,	
 1987,	
 pp.	

222-­‐232.	

[52]	
 Aman	
 Bakshi	
 and	
 B	
 Yogesh,	
 "Securing	
 cloud	
 from	
 DDOS	
 Attacks	
 using	

Intrusion	
 Detection	
 System	
 in	
 Virtual	
 Machine	
 ,"	
 in	
 International	

Conference	
 on	
 Communication	
 Software	
 and	
 Networks	
 ,	
 2010.	

[53]	
 Richard	
 Lippmann,	
 Joshua	
 Haines,	
 David	
 Fried,	
 Johnathan	
 Korba,	
 and	

Das	
 Kumar,	
 "The	
 1999	
 DARPA	
 Off-­‐Line	
 Intrusion	
 Detection	

Evaluation,"	
 The	
 International	
 Journal	
 of	
 Computer	
 and	

Telecommunications	
 Networking	
 -­‐	
 Special	
 issue	
 on	
 recent	
 advances	
 in	

intrusion	
 detection	
 systems	
 ,	
 vol.	
 34,	
 no.	
 4,	
 pp.	
 579-­‐595,	
 2000.	

[54]	
 Tal	
 Garfunkel	
 and	
 Medel	
 Rosenblum,	
 "A	
 Virtual	
 Machine	
 Introspection	

Based	
 Architecture	
 for	
 Intrusion	
 Detection	
 ,"	
 in	
 Network	
 and	

Distributed	
 Systems	
 Security	
 Symposium,	
 2003.	

[55]	
 Gene	
 Kim	
 and	
 Eugene	
 Spafford,	
 "The	
 Design	
 and	
 Implementation	
 of	

Tripwire:	
 A	
 File	
 System	
 Integrity	
 Checker	
 ,"	
 in	
 ACM	
 Conference	
 on	

Computer	
 and	
 communications	
 security,	
 1994,	
 pp.	
 18-­‐29.	

[56]	
 Steven	
 Hofmeyr,	
 Stephanie	
 Forrest,	
 and	
 Anil	
 Somayaji,	
 "Intrusion	

Detection	
 using	
 Sequences	
 of	
 System	
 Calls,"	
 Journal	
 of	
 Computer	

Security,	
 vol.	
 6,	
 pp.	
 151-­‐180,	
 1998.	

[57]	
 Abinav	
 Srivastava	
 and	
 Jonathon	
 Giffin,	
 "Tamper-­‐Resistant,	

Application-­‐	
 Aware	
 Blocking	
 of	
 Malicious	
 Network	
 Connections	
 ,"	
 in	

International	
 symposium	
 on	
 Recent	
 Advances	
 in	
 Intrusion	
 Detection	
 ,	

2008,	
 pp.	
 39-­‐58.	

[58]	
 Jonas	
 Pfoh,	
 Christian	
 Schneider,	
 and	
 Claudia	
 Exkert,	
 "A	
 Formal	
 Model	

for	
 Virtual	
 Machine	
 Introspection,"	
 in	
 ACM	
 workshop	
 on	
 Virtual	

machine	
 security	
 ,	
 2009,	
 pp.	
 1-­‐10.	

[59]	
 Peter	
 Loscocco,	
 Perry	
 Wilson,	
 Aaron	
 Pendergrass,	
 and	
 Durward	

McDonell,	
 "Linux	
 Kernel	
 Integrity	
 Measurement	
 Using	
 Contextual	

Inspection	
 ,"	
 in	
 ACM	
 workshop	
 on	
 Scalable	
 trusted	
 computing	
 ,	
 2007,	

pp.	
 21-­‐29.	

[60]	
 D	
 Zhu	
 and	
 Erika	
 Chin,	
 "Detection	
 of	
 VM-­‐Aware	
 Malware,"	
 University	
 of	

Berkeley,	
 White	
 Paper	
 2007.	

[61]	
 Manuel	
 Egele,	
 Christopher	
 Kruegel,	
 Engin	
 Kirda,	
 Heng	
 Yin,	
 and	
 Dawn	

Song,	
 "Dynamic	
 Spyware	
 Analysis	
 ,"	
 in	
 USENIX	
 Annual	
 Technical	

	
 200	

Conference	
 ,	
 2007.	

[62]	
 Ilsun	
 You	
 and	
 Kangbin	
 Yim,	
 "Malware	
 Obfuscation	
 Techniques:	
 A	
 Brief	

Survey	
 ,"	
 in	
 International	
 Conference	
 on	
 Broadband,	
 Wireless	

Computing,	
 Communication	
 and	
 Application	
 ,	
 2010.	

[63]	
 Benjamin	
 Livshits,	
 "Dynamic	
 Taint	
 Tracking	
 in	
 Managed	
 Runtimes,"	

Microsoft	
 Research,	
 Technical	
 Report	
 MSR-­‐TR-­‐2012-­‐114	
 ,	
 2012.	

[64]	
 Xuxian	
 Jiang,	
 Xinyuan	
 Wang,	
 and	
 Dongyan	
 Xu,	
 "Stealthy	
 Malware	

Detection	
 Through	
 VMM-­‐Based	
 “Out-­‐of-­‐the-­‐Box”	
 Semantic	
 View	

Reconstruction,"	
 in	
 ACM	
 conference	
 on	
 Computer	
 and	
 communications	

security,	
 2007,	
 pp.	
 128-­‐138.	

[65]	
 T.	
 Klein.	
 (2003)	
 Scooby	
 Doo	
 -­‐	
 VMware	
 Fingerprint	
 Suite.	
 [Online].	

http://www.trapkit.de/research/vmm/scoopydoo/index.html	
 	

[66]	
 J.	
 Giffin,	
 "The	
 Next	
 Malware	
 Battleground	
 Recovery	
 after	
 Unknown	

Infection	
 ,"	
 IEEE	
 Journal	
 on	
 Security	
 and	
 Privacy	
 ,	
 pp.	
 74-­‐76,	
 2010.	

[67]	
 CERT,	
 "CERT/CC	
 Security	
 Improvement	
 Modules:	
 Analyze	
 all	
 available	

information	
 to	
 characterize	
 an	
 intrusion	
 ,"	
 CERT	
 Coordination	
 Center	
 ,	

Technical	
 Report	
 2001.	

[68]	
 Dave	
 Dittrich,	
 "Report	
 on	
 the	
 Linux	
 Honeypot	
 Compromise,"	
 The	

Honeyney	
 Project,	
 Technical	
 Report	
 2000.	

[69]	
 George	
 Dunlap,	
 Samuel	
 King,	
 Sukru	
 Cinar,	
 Murtaza	
 Basrai,	
 and	
 Peter	

Chen,	
 "ReVirt:	
 Enabling	
 Intrusion	
 Analysis	
 through	
 Virtual-­‐Machine	

Logging	
 and	
 Replay,"	
 in	
 Operating	
 systems	
 design	
 and	
 implementation	
 ,	

2002,	
 pp.	
 211-­‐224.	

[70]	
 Kerstin	
 Buchacker,	
 Volkmar	
 Sieh,	
 and	
 Friedrich	
 Alexander,	

"Framework	
 for	
 testing	
 the	
 fault-­‐	
 tolerance	
 of	
 systems	
 including	
 OS	

and	
 network	
 aspects	
 ,"	
 in	
 IEEE	
 High-­‐	
 Assurance	
 System	
 Engineering	

Symposium	
 ,	
 Universität	
 Erlangen-­‐nürnberg	
 ,	
 2001.	

[71]	
 Joanna	
 Rutkowska	
 and	
 Alexander	
 Tereshkin,	
 "Bluepilling	
 the	
 Xen	

Hypervisor,"	
 in	
 Black	
 Hat,	
 2008.	

[72]	
 Reiner	
 Sailer	
 et	
 al.,	
 "sHype:	
 Secure	
 Hypervisor	
 Approach	
 to	
 Trusted	

Virtualized	
 Systems	
 ,"	
 IBM	
 Research,	
 Research	
 Report	
 RC23511,	
 2005.	

[73]	
 Peter	
 Loscocco	
 and	
 Stephen	
 Smalley,	
 "Integrating	
 Flexible	
 Support	
 for	

	
 201	

Security	
 Policies	
 into	
 the	
 Linux	
 Operating	
 System,"	
 ,	
 2001,	
 pp.	
 29-­‐42.	

[74]	
 Trent	
 Jaeger,	
 Reiner	
 Sailer,	
 and	
 Xiaolin	
 Zhang,	
 "Analyzing	
 integrity	

protection	
 in	
 the	
 SELinux	
 example	
 policy	
 ,"	
 in	
 USENIX	
 Security	

Symposium	
 ,	
 2003.	

[75]	
 Sebastian	
 Vogl,	
 "Secure	
 Hypervisors,"	
 in	
 International	
 Conference	
 on	

Enterprise	
 Information	
 System	
 ,	
 2010.	

[76]	
 Ge	
 Cheng,	
 Hai	
 Jin,	
 Deqing	
 Zou,	
 Alex	
 Ohoussou,	
 and	
 Feng	
 Zhao,	
 "A	

Prioritized	
 Chinese	
 Wall	
 Model	
 for	
 Managing	
 the	
 Covert	
 Information	

Flows	
 in	
 Virtual	
 Machine	
 Systems	
 ,"	
 in	
 International	
 Conference	
 for	

Young	
 Computer	
 Scientists	
 ,	
 2008,	
 pp.	
 1481-­‐1487.	

[77]	
 Guanhai	
 Wang,	
 Minglu	
 Li,	
 and	
 Chuliang	
 Weng,	
 "Chinese	
 Wall	
 Isolation	

Mechanism	
 and	
 Its	
 Implementation	
 on	
 VMM	
 ,"	
 in	
 Systems	
 and	

Virtualization	
 Management.	
 Standards	
 and	
 the	
 Cloud	
 ,	
 vol.	
 71,	
 2010,	
 pp.	

13-­‐18.	

[78]	
 Reiner	
 Sailer	
 et	
 al.,	
 "Building	
 a	
 MAC-­‐	
 Based	
 Security	
 Architecture	
 for	

the	
 Xen	
 Open-­‐Source	
 Hypervisor	
 ,"	
 in	
 Computer	
 Security	
 Applications	

Conference	
 ,	
 2005.	

[79]	
 Jakub	
 Szefer,	
 Eric	
 Keller,	
 Ruby	
 Lee,	
 and	
 Jennifer	
 Rexford,	
 "Eliminating	

the	
 Hypervisor	
 Attack	
 Surface	
 for	
 a	
 More	
 Secure	
 Cloud	
 ,"	
 in	
 ACM	

conference	
 on	
 Computer	
 and	
 communications	
 security,	
 pp	
 401-­‐412	
 ,	
 pp.	

401-­‐412.	

[80]	
 Derek	
 Murray,	
 Gregorz	
 Milos,	
 and	
 Steven	
 Hand,	
 "Improving	
 Xen	

Security	
 through	
 Disaggregation	
 ,"	
 in	
 ACM	
 SIGPLAN/SIGOPS	

international	
 conference	
 on	
 Virtual	
 execution	
 environments	
 ,	
 2008,	
 pp.	

151-­‐160.	

[81]	
 Yaozu	
 Dong,	
 Zhao	
 Yu,	
 and	
 Greg	
 Rose,	
 "SR-­‐IOV	
 networking	
 in	
 Xen:	

architecture,	
 design	
 and	
 implementation	
 ,"	
 in	
 First	
 conference	
 on	
 I/O	

virtualization	
 ,	
 2008.	

[82]	
 Christopher	
 Clark	
 et	
 al.,	
 "Live	
 Migration	
 of	
 Virtual	
 Machines	
 ,"	
 in	

Symposium	
 on	
 Networked	
 Systems	
 Design	
 &	
 Implementation	
 ,	
 vol.	
 2,	
 pp.	

273-­‐286.	

[83]	
 Mohamed	
 Gouda	
 and	
 Alex	
 Liu,	
 "A	
 Model	
 of	
 Stateful	
 Firewalls	
 and	
 its	

Properties	
 ,"	
 in	
 IEEE	
 International	
 Conference	
 on	
 Dependable	
 Systems	

and	
 Networks	
 ,	
 2005.	

	
 202	

[84]	
 Chrstopher	
 Kruegel,	
 Fredrik	
 Valeur,	
 Giovanni	
 Vigna,	
 and	
 Richard	

Kemmerer,	
 "Stateful	
 Intrusion	
 Detection	
 for	
 High-­‐Speed	
 Networks	
 ,"	

in	
 IEEE	
 Symposium	
 on	
 Security	
 and	
 Privacy	
 ,	
 2002.	

[85]	
 Chen	
 Xianqin,	
 Wan	
 Han,	
 Wang	
 Sumei,	
 and	
 Long	
 Xiang,	
 "Seamless	

Virtual	
 Machine	
 Live	
 Migration	
 on	
 Network	
 Security	
 Enhanced	

Hypervisor	
 ,"	
 in	
 Broadband	
 Network	
 &	
 Multimedia	
 Technology	
 ,	
 2009,	

pp.	
 847-­‐853.	

[86]	
 J.	
 Laprie,	
 "Resilience	
 for	
 the	
 scalability	
 of	
 dependability	
 ,"	
 in	
 ISNCA	
 ,	

2005,	
 pp.	
 5-­‐6.	

[87]	
 Flavio	
 Lombardi,	
 Roberto	
 Di	
 Pietro,	
 and	
 Claudio	
 Soriente,	
 "ReW:	
 Cloud	

Resilience	
 forWindows	
 Guests	
 through	
 Monitored	
 Virtualization	
 ,"	
 in	

IEEE	
 Symposium	
 on	
 Reliable	
 Distributed	
 Systems	
 ,	
 2010,	
 pp.	
 338-­‐342.	

[88]	
 Flavio	
 Lombardi	
 and	
 Roberto	
 Di	
 Pietro,	
 "Kvmsec:	
 a	
 security	
 extension	

for	
 linux	
 kernel	
 virtual	
 machines	
 ,"	
 in	
 ACM	
 symposium	
 on	
 Applied	

Computing	
 ,	
 2009,	
 pp.	
 2029-­‐2034.	

[89]	
 Flavio	
 Lombardi	
 and	
 Roberto	
 Di	
 Pietro,	
 "Secure	
 virtualization	
 for	

cloud	
 computing,"	
 Journal	
 of	
 Network	
 and	
 Computer	
 Applications	
 ,	
 pp.	

1113-­‐1122,	
 2011.	

[90]	
 Rusty	
 Russel,	
 "lguest:	
 Implementing	
 the	
 little	
 Linux	
 hypervisor,"	
 in	

Linux	
 Symposium	
 ,	
 vol.	
 2,	
 2007,	
 pp.	
 173-­‐178.	

[91]	
 Hans	
 Reiser	
 and	
 Rudiger	
 Kapitza,	
 "Hypervisor-­‐Based	
 Efficient	

Proactive	
 Recovery	
 ,"	
 in	
 IEEE	
 International	
 Symposium	
 on	
 Reliable	

Distributed	
 Systems	
 ,	
 2007,	
 pp.	
 83-­‐92.	

[92]	
 Hans	
 Reisner	
 and	
 Rudiger	
 Kapitza,	
 "VM-­‐FIT:	
 Supporting	
 Intrusion	

Tolerance	
 with	
 Virtualisation	
 Technology	
 ,"	
 in	
 Workshop	
 on	
 Recent	

Advances	
 on	
 Intrusion-­‐Tolerant	
 Systems	
 ,	
 2007,	
 pp.	
 18-­‐22.	

[93]	
 Andrew	
 Tenenbaum,	
 Modern	
 Operating	
 Systems.	

[94]	
 Rick	
 Lehtinen,	
 Deborah	
 Russell,	
 and	
 G.T.	
 Gangemi	
 Sr.,	
 Computer	

Security	
 Basics,	
 2nd	
 ed.:	
 O'Reilly	
 Media,	
 2006.	

[95]	
 S.	
 Berger	
 et	
 al.,	
 "Security	
 for	
 the	
 cloud	
 infrastructure:	
 Trusted	
 virtual	

data	
 center	
 implementation,"	
 IBM	
 Journal	
 of	
 Research	
 and	

Development,	
 vol.	
 53,	
 pp.	
 560-­‐571,	
 2009.	

	
 203	

[96]	
 Stefan	
 Berger,	
 Ramon	
 Caceres,	
 Dimitrios	
 Pendarakis,	
 Reiner	
 Sailer,	

and	
 Enriquillo	
 Valdez,	
 "TVDc:	
 Managing	
 Security	
 in	
 the	
 Trusted	

Virtual	
 Datacenter	
 ,"	
 in	
 ACM	
 SIGOPS	
 Operating	
 Systems	
 Review	
 ,	
 vol.	
 42,	

2008,	
 pp.	
 40-­‐47.	

[97]	
 Shucheng	
 Yu,	
 Cong	
 Wang,	
 Kui	
 Ren,	
 and	
 Wenjing	
 Lou,	
 "Achieving	

Secure,	
 Scalable,	
 and	
 Fine-­‐grained	
 Data	
 Access	
 Control	
 in	
 Cloud	

Computing	
 ,"	
 in	
 Information	
 communications	
 ,	
 2010,	
 pp.	
 534-­‐542.	

[98]	
 Hewlett-­‐Packard	
 Corporation,	
 Intel	
 Corporation,	
 Microsoft	

Corporation,	
 Phoenix	
 Technologies	
 Ltd.,	
 Toshiba	
 Corporation,	

"Advanced	
 Configuration	
 and	
 Power	
 Interface	
 Specification,"	

Specification	
 2013.	

[99]	
 Intel,	
 "MultiProcessor	
 Specification,"	
 Intel	
 Corporation,	
 Specification	

May	
 1997.	

[100]	
 AMD,	
 "AMD64	
 Architecture	
 Programmer’s	
 Manual,"	
 Advanced	
 Micro	

Devices	
 Corporation,	
 Architecture	
 Specification	
 Publication	
 No.	

24592,	
 2013.	

[101]	
 Intel,	
 "Intel	
 Platform	
 Innovation	
 Framework	
 for	
 EFI	
 Firmware	
 File	

System,"	
 Intel	
 Corporation,	
 Architecture	
 Specification	
 2013.	

[102]	
 Unified	
 EFI,	
 Inc,	
 "Unified	
 Extensible	
 Firmware	
 Interface,"	
 UEFI	
 Forum,	

Architecture	
 Specifcaton	
 2015.	

[103]	
 Christopher	
 Domas,	
 "The	
 Memory	
 Sinkhole,"	
 in	
 Black	
 Hat,	
 Las	
 Vegas,	

2015.	

[104]	
 Love	
 Robert,	
 Linux	
 Kernel	
 Development,	
 2nd	
 ed.:	
 Sams	
 Publishing,	

2005.	

[105]	
 Rob	
 Pike	
 et	
 al.,	
 "Plan	
 9	
 from	
 Bell	
 Labs,"	
 Computing	
 Systems,	
 vol.	
 8,	
 no.	

3,	
 pp.	
 221-­‐254,	
 Summer	
 1995.	

[106]	
 James	
 Larkby-­‐Lahet,	
 Brian	
 A	
 Madden,	
 Dave	
 Wilkinson,	
 and	
 Daniel	

Mosse,	
 "XOmB:	
 an	
 Exokernel	
 for	
 Modern	
 64-­‐bit,	
 Multicore	
 Hardware,"	

University	
 of	
 Pittsburgh,	
 White	
 Paper	
 2010.	

[107]	
 Gary	
 Kildall,	
 "The	
 History	
 of	
 CP/M,	
 The	
 Evolution	
 of	
 an	
 Industry:	
 One	

Person's	
 Viewpoint,"	
 Dr.	
 Jobb's	
 Journal	
 of	
 Computer	
 Calisthenics	
 &	

Orthodontia,	
 vol.	
 5,	
 no.	
 (1)(41),	
 pp.	
 6-­‐7,	
 1980.	

	
 204	

[108]	
 Ray	
 Duncan,	
 The	
 MS-­‐DOS	
 Encyclopedia.	
 USA:	
 Microsoft	
 Press.	

[109]	
 ECMA,	
 "Volume	
 and	
 File	
 Structure	
 of	
 Disk	
 Cartridges	
 for	
 Information	

Interchange,"	
 Technical	
 Specification	
 Standard	
 ECMA-­‐107,	
 1995.	

[110]	
 Irv	
 Englander,	
 The	
 Architecture	
 of	
 Computer	
 Hardware	
 and	
 System	

Software:	
 An	
 Information	
 Technology	
 Approach,	
 5th	
 ed.	
 USA:	
 Wiley,	

2014.	

[111]	
 Intel,	
 "8259A	
 Programmable	
 Interrupt	
 Controller	
 (8259A/8259A-­‐2),"	

Intel	
 Corporation,	
 Datasheet	
 Order	
 Number�	
 231468-­‐003	
 ,	
 1988.	

[112]	
 David	
 Patterson	
 and	
 John	
 Hennessy,	
 Computer	
 Organization	
 and	

Design.	
 Hardware/Software	
 Interface,	
 4th	
 ed.	
 Burlington,	
 MA,	
 USA:	

Morgan	
 Kaufmann	
 Publishers,	
 2009.	

[113]	
 Intel,	
 "8086	
 16-­‐Bit	
 HMOS	
 Microproocessor	
 8086/8086-­‐2/8086-­‐1,"	

Intel,	
 Data	
 Sheet	
 Order	
 Number:	
 231455-­‐005,	
 1990.	

[114]	
 Intel,	
 "High	
 Performance	
 Microprocessor	
 with	
 Memory	
 Managment	

and	
 Protection,"	
 Technical	
 Specification	
 Order	
 Number:	
 210253-­‐013,	

1988.	

[115]	
 Masahiko	
 Sakamoto.	
 (2010,	
 May)	
 Why	
 BIOS	
 loads	
 MBR	
 into	
 0x7C00	
 in	

X86.	
 [Online].	
 http://www.glamenv-­‐septzen.net/en/view/6	

[116]	
 Intel,	
 "Dual-­‐Core	
 Intel®	
 Xeon®	
 Processor	
 2.80	
 GHz,"	
 Intel	

Corporation,	
 Specification	
 Update	
 Document	
 Number:	
 309159-­‐008,	

2006.	

[117]	
 Grigorios	
 Magklis,	
 Fernando	
 Latorre,	
 and	
 Antonio	
 Gonzalez,	
 Processor	

Microarchitecture:	
 An	
 Implementation	
 Perspective.:	
 Morgan	
 &	
 Claypool	

Publishers,	
 2011.	

[118]	
 Brian	
 Stuart,	
 Principles	
 of	
 Operating	
 Systems:	
 Design	
 and	
 Applications,	

1st	
 ed.:	
 Cengage	
 Learning	
 EMEA,	
 2008.	

[119]	
 Joseph	
 McGivern,	
 Interrupt-­‐Driven	
 PC	
 System	
 Design.:	
 Annabooks,	

1998.	

[120]	
 Intel,	
 "82489DX	
 Advanced	
 Programmable	
 Interrupt	
 Controller,"	
 Intel	

Corporation,	
 Datasheet	
 Order	
 Number:290446-­‐002,	
 1993.	

[121]	
 Intel,	
 "Using	
 the	
 RDTSC	
 Instruction	
 for	
 Performance	
 Monitoring,"	
 Intel	

	
 205	

Corporation,	
 Manual	
 1998.	

[122]	
 (2011,	
 June)	
 Kernel	
 Newbies.	
 [Online].	

http://kernelnewbies.org/BigKernelLock	

[123]	
 Remzi	
 Arpaci-­‐Dusseau	
 and	
 Andrea	
 Apraci-­‐Dusseau,	
 Operating	

Systems:	
 Three	
 Easy	
 Pieces,	
 1st	
 ed.:	
 Arpaci-­‐Dusseau	
 Books,	
 2014.	

[124]	
 Beth	
 Pariseau.	
 (2011,	
 April)	
 SearchServerVirtualization.	
 [Online].	

http://searchservervirtualization.techtarget.com/news/2240034817
/KVM-­‐reignites-­‐Type-­‐1-­‐vs-­‐Type-­‐2-­‐hypervisor-­‐debate	

[125]	
 American	
 Standards	
 Association,	
 "American	
 Standard	
 Code	
 for	

Information	
 Interchange,"	
 Technical	
 Report	
 ASA	
 X3.4-­‐1963,	
 1983.	

[126]	
 Morgon	
 Kanter,	
 "Enhancing	
 Non-­‐Determinism	
 in	
 Operating	
 Systems,"	

Thayer	
 School	
 of	
 Engineering,	
 Dartmouth	
 College,	
 Hanover,	
 PhD	

Thesis	
 2013.	

[127]	
 Martin	
 Reddy,	
 API	
 Design	
 for	
 C++,	
 1st	
 ed.:	
 Morgoan	
 Kaufmann,	
 2011.	

[128]	
 Mordechai	
 Ben-­‐Ari,	
 Principles	
 of	
 Concurrent	
 and	
 Distributed	

Programming,	
 2nd	
 ed.:	
 Pearson,	
 2006.	

[129]	
 Sanjoy	
 Baruah,	
 Louis	
 Rosier,	
 and	
 Rodney	
 Howell,	
 "Algorithms	
 and	

complexity	
 concerning	
 the	
 preemptive	
 scheduling	
 of	
 periodic,	
 real-­‐
time	
 tasks	
 on	
 one	
 processor,"	
 Real-­‐time	
 Systems,	
 vol.	
 2,	
 no.	
 4,	
 pp.	
 301-­‐
324,	
 Nov	
 1990.	

[130]	
 Avi	
 Silberschatz	
 and	
 Peter	
 Galvin,	
 Operating	
 System	
 Concepts.:	

Addison-­‐Wesley,	
 1998,	
 vol.	
 4.	

[131]	
 Atmel,	
 "AT04055:	
 Using	
 the	
 lwIP	
 Network	
 Stack,"	
 Atmel	
 Corporation,	

Technical	
 Report	
 42233A	
 −	
 SAM	
 −	
 03/2014,	
 2014.	

[132]	
 TMurgent	
 Technologies,	
 "Processor	
 Affinity,"	
 White	
 Paper	
 2003.	

[133]	
 John	
 Hennesy	
 and	
 David	
 Patterson,	
 Computer	
 Architecture:	
 A	

Quantitative	
 Approach,	
 5th	
 ed.:	
 Morgan	
 Kaufmann,	
 2011.	

[134]	
 Jerrel	
 Watts	
 and	
 Stephen	
 Taylor,	
 "A	
 Practical	
 Approach	
 to	
 Dynamic	

Load	
 Balancing,"	
 IEEE	
 Transactions	
 on	
 Parallel	
 and	
 Distributed	

Systems,	
 vol.	
 9,	
 pp.	
 235-­‐248,	
 1998.	

	
 206	

[135]	
 Jerrel	
 Watts	
 and	
 Stephen	
 Taylor,	
 "Communications	
 Locality	

Preservation	
 in	
 Dynamic	
 Load	
 Balancing,"	
 High	
 Performance	

Computing:Grand	
 Challenges	
 in	
 Computer	
 Simulation,	
 pp.	
 186-­‐190,	

1998.	

[136]	
 Jerrel	
 Watts	
 and	
 Stephen	
 Taylor,	
 "Automatic	
 Granularity	
 control	
 for	

Load	
 Balancing	
 of	
 Concurrent	
 Particle	
 Simulations,"	
 Grand	
 Challenges	

in	
 Computer	
 Simulation,	
 pp.	
 115-­‐120,	
 April	
 1998.	

[137]	
 Jerrel	
 Watts	
 and	
 Stephen	
 Taylor,	
 "Dynamic	
 Management	
 of	

Heterogeneous	
 Resources,"	
 High	
 Performance	
 Computing:Grand	

Challenges	
 in	
 Computer	
 Simulation,	
 pp.	
 151-­‐156,	
 April	
 1998.	

[138]	
 J.	
 Watts	
 and	
 S.	
 Taylor,	
 "A	
 Vector-­‐based	
 Strategy	
 for	
 Dynamic	
 Resource	

Allocation,"	
 Journal	
 of	
 Concurrency:	
 Practice	
 and	
 Experiences,	
 1998.	

[139]	
 Jun	
 Nakajima,	
 "Xen	
 as	
 High-­‐Performance	
 NFV	
 Platform,"	
 in	
 Xen	
 Project	

Developer	
 Summit,	
 Chicago,	
 2014.	

[140]	
 Mano	
 Marks.	
 (2016,	
 January)	
 Docker.	
 [Online].	

https://blog.docker.com/2016/01/unikernel/	

[141]	
 K.	
 McGill,	
 "Operating	
 System	
 Support	
 for	
 Resilience,"	
 Thayer	
 School	
 of	

Engineering	
 at	
 Darrtmouth	
 College,	
 PhD	
 Thesis	
 2011.	

[142]	
 Alan	
 Heirich	
 and	
 Stephen	
 Taylor,	
 "Load	
 Balancing	
 by	
 Diffusion,"	
 in	

International	
 Conference	
 on	
 Parallel	
 Programming,	
 1995,	
 pp.	
 192-­‐202.	

	

	

