
	 	

Bear – a Resilient Core for Distributed Systems

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Master of Science

by

Colin Nichols

Thayer School of Engineering

Dartmouth College

Hanover, New Hampshire

January 2013

Examining Committee:

Chairman_______________________
Stephen Taylor, Ph.D.

Member________________________

George Cybenko, Ph.D.

Member________________________
Andrew Campbell, Ph.D.

F. Jon Kull
Dean of Graduate Studies

	 	

ii	
	

	
Abstract

This paper describes Bear, a clean-slate, resilient operating system design intended to

support military applications on scalable multi-processors. The system combines a

minimalist micro-kernel with an associated hypervisor, and presents only a 120Kbyte

attack surface on 64-bit x86 blade servers. MULTICS-like protections are strictly

enforced through extended page tables and Intel VT-x extensions. The design utilizes

multiple, overlapping, non-deterministic techniques to continually re-establish trust. This

is achieved by dynamically regenerating core components of distributed computations

and their underlying execution environment. The cumulative effect of this design style is

to increase attacker workload by denying surveillance and persistence over time-scales

consistent with tactical operations. Unlike traditional approaches to computer security, no

attempt is made to detect intrusions: instead, we focus on continually validating,

preserving, and re-establishing the ability of a mission to proceed.

iii	
	

Acknowledgements

The work draws its microkernel inspiration from the MINIX system and the many

valuable insights that this system provides to operating system developers. The research

also draws on the thoughts and work of a talented group of graduate students at

Dartmouth, in particular Morgan Kanter who developed the hypervisor core, bootloader,

and explored camouflage; Stephen Kuhn who explored kernel regeneration in the context

of web-servers and forensics; Kathleen Mcgill who explored application level resiliency;

and finally Michael Henson and Jason Dahlstrom who ported the Bear kernel to the ARM

M3, A8, and A9 architectures. We sincerely thank all concerned for their help and

participation.

This research is supported by the Defense Advanced Research Projects Agency

(DARPA) as part of the CRASH program under contract FA8750-09-1-0213. The U.S.

Government is authorized to reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon. The views and conclusions contained

herein are those of the authors and should not be interpreted as necessarily representing

the official policies or endorsements, either expressed or implied, of the Defense

Advanced Research Projects Agency (DARPA) or the U.S. Government.

iv	
	

Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Tables v

List of Figures vi

List of Acronyms vii

Introduction 1

Overview of the System Design 2

Protecting the Micro-kernel 3

Message-passing API 4

Attack Mitigation 5

Mitigation of Corrupted Device Drivers 6

Protecting the Hypervisor 9

 DMA Protection 12

Quantifying the Attack Surface 15

Extending Trust to Distributed Applications 17

Conclusion 19

References 21

v	
	 	

List of Tables

Table 1: Page Table Protection Configurations………………………………………….. 4

Table 2 Kernel Comparison: Lines of Code……..……….……………………………...15

Table 3: Hypervisor Comparison: Lines of Code………..………………………………15

Table 4: The AIM9 Benchmark Suite ………………………………………………..… 16

Table 5: Performance Study Results……………………………………………………. 17

vi	
	

List of Figures

Figure 1: Threat Model for Intrusions with Remote Control…………………………...... 1

Figure 2: The Bear Operating System…………………………………………………… 2

Figure 3: Page Table Entry for x86-64 Address Translation……………......................... 3

Figure 4: Virtual Address Space During Process Execution…………………………….. 4

Figure 5: EPT provides the guest-physical address space (yellow), allowing the

hypervisor to control physical memory without cooperation from the guest OS………..10

Figure 6: Guest-physical address space protections enforced via EPT………………….10

Figure 7: Intel VT-d modifies the standard computer architecture………………………12

Figure 8: A typical DMA transfer on a system without virtualization…………………..13

Figure 9: The NIC card using a driver-supplied GP address as a P address, corrupting

memory…………………………………………………………………………………..13

Figure 10: DMA transfer from guest-resident driver to NIC card with EPT and VT-d...14

Figure 11: EPT Workaround for DMA – kernel requests P address from

hypervisor ...……………………………………………………………………………..14

Figure 12: Dynamic process regeneration……………………………………………….15

vii	
	

List of Acronyms

Extended Page Tables EPT

Read Only Memory ROM

Internet Protocol IP

Media Access Control MAC

Message Passing Interface MPI

Application Programming Interface API

Video Graphics Array VGA

Return Oriented Programming ROP

GNU’s Not Unix GNU

Basic Input/Output System BIOS

Central Processing Unit CPU

Peripheral Component Interconnect PCI

Direct Memory Access DMA

Commercial Off-The-Shelf COTS

Input/Output Memory Management Unit IOMMU

Network Interface Card NIC

Light Detection and Ranging LIDAR

1	
	

Introduction

Current operating system designs have sought to utilize a static base of trust and extend
trust into software through deliberate layering [1]. Unfortunately, a wide variety of
vulnerabilities have appeared that undermine kernel security allowing attackers to
implant code, hide, and persist at the highest levels of privilege [2]. The number of
vulnerabilities is directly correlated with the size of the code base [3], indicating that
there is substantial value in the intellectual process of reducing the attack surface.

Irrespective of the implant design, there are only two fundament use cases: performing a
triggered effect autonomously, or conducting effects under remote control. The first case
is of limited use and is analogous to any other general failure or error; it can, and
routinely is, combated by skilled network administrators through diversity, gold-standard
images, and/or spare equipment. The second, more interesting case, can be mitigated by
denying or degrading remote control: increasing attacker workload to the point where
there can be no significant impact on the time-scale of tactical operations.

The threat model for intrusions employing remote control is outlined in Figure 1. It may
involves several steps including surveillance to determine if a vulnerability exists, use of
an appropriate exploit or other access method, and privilege escalation to remove exploit
artifacts and/or hide behavior. The implant then persists for a time sufficient enough to
carry out some malicious effect, obtain useful information, or propagate intrusion to other
systems. Unlike the time to execute an exploit, the time spent in surveillance and
persistence may range from minutes to months or even years depending upon the
intended effect. Moreover, the presence of an intrusion may never be detected by network
defenses but instead may be recognized due to either a deviation from expected behavior,
or may be derived from intelligence sources.

Figure 1: Threat Model for Intrusions with Remote Control

	 2	

Overview of the System Design

Our approach assumes that adversaries will conduct surveillance, will be successful in
gaining access, and will persist undetected. To mitigate the risks associated with remote
control, we periodically discard the current kernel, user processes, and device drivers.
They are replaced by new instances, bootstrapped in the background from read-only gold
standards. The cumulative effect of this change in design style is to increase attacker
workload by continually invalidating surveillance data and denying persistence over
time-scales consistent with tactical missions. Unlike other approaches to computer
security, no attempt is made to detect intrusions: instead, we focus on continually
validating, preserving, and re-establishing the ability of a mission to proceed.

These concepts have been incorporated into a new, from-scratch operating system design
-- Bear -- that operates on 64-bit, x86 multi-core blade servers. The system is depicted in
Figure 2 and is composed of a minimalist micro-kernel with an associated hypervisor that
share code extensively to reduce the attack surface.

Figure 2: The Bear Operating System

The core functions of scheduling user processes and protecting them from each other are
handled by the micro-kernel. All processes and layers are hardened by strictly enforcing
MULTICS-style read, write, and execute protections [4] using 64-bit x86 address
translation hardware. This calculated reduction in versatility is unlikely to impact military
applications but explicitly removes vulnerabilities associated with code execution from
the heap or stack.

	 3	

All potentially contaminated user processes, device drivers and services are executed
with user–level privileges and are strictly isolated from the micro-kernel via a message-
passing interface. The system task, executing with kernel privileges, mediates between
processes and the kernel to implement the interface. Unlike a conventional rendezvous
mechanism [5], this asynchronous, buffered design provides a single uniform treatment
of system calls, inter-process, and inter-processor communication. The interface also
supports distributed computing through an MPI-like [6] programming model that maps
processes to processors using a user level demon, rMP.

To prevent persistence in compromised device drivers and services, the micro-kernel
randomly and non-deterministically regenerates them from gold-standard images resident
in a trusted read-only file store. This store is currently realized through a file system
accessible only from the kernel and hypervisor; however, it could alternatively be
realized via read-only memory (ROM) or via an out-of-band, write-enabled channel to
flash on new hardware. Unlike the MINIX re-incarnation process [5], regeneration is
carried out without regard to the perceived fault or infection status. User processes can
also be refreshed through pre-arranged or designated schedules; for example, every few
hours, at night, or just prior to a tactical mission.

To prevent persistence in the micro-kernel, it is also non-deterministically refreshed from
a gold-standard image in the trusted file store, by the hypervisor. Unlike traditional
hypervisors, which are intended to support a general virtual machine execution
environment [7, 8, 9], this minimalist hypervisor is designed to support only the
operations required to bootstrap a new micro-kernel and change its network properties
(e.g. IP & MAC address) so as to invalidate an adversary’s surveillance data. The current
running and bootstrapping instances of the micro-kernel are isolated in hardware through
extended page tables, implemented with Intel VT-x extensions. Similarly, the network
card is isolated through a mapping scheme based on Intel VT-d extensions.

Protecting the Micro-kernel

The micro-kernel architecture leverages the latest x86-64 address translation hardware to
provide isolation and MULTICS-style read, write, and execute (R/W/X) privileges for
processes. Recent x86-64 processors no longer support segmentation, but they do feature
control bits that enable the kernel to allow or deny reading, writing, and execution of a
particular memory page. This is achieved using three protection bits in x86-64 page table
entries, shown in Figure 3.

Figure 3: Page Table Entry for x86-64 Address Translation.

To isolate user processes from the kernel, the kernel clears the user/supervisor bit (U/S,
bit 2) on its own pages. If any user process attempts to read, write, or execute code in

	 4	

these pages, the processor traps to the kernel. Bear enforces MULTICS-style protections
for process memory using the read/write (R/W) and execute disable (XD) bits. When a
process is loaded, the bits are set so that the process text (code) is readable/executable.
Conversely, process data and stack are designated readable/writeable. These decisions
yield the protected address space illustrated in Figure 4. The corresponding permission
bit configurations are also shown below in Table 1.

Figure 4: Virtual Address Space During Process Execution.

Memory Type U/S Bit Value R/W Bit Value XD Bit Value

User Process Text 1 0 0
User Process Data 1 1 1
User Process Stack 1 1 1

Kernel Text 0 0 0
Kernel Data 0 1 1
Kernel Stack 0 1 1

Table 1: Page table protection configurations.

Message-Passing API

The memory space of each process is strictly isolated from that of other processes and
the micro-kernel by page protections. All processes interact via a simple MPI-like
asynchronous message-passing interface [6]. This allows the same isolation ideas to be
used for inter-process communication within the same processor, across multiple
processors, and between user processes and the kernel. The interface provides only two
asynchronous, blocking, communication primitives:

• msgsend(dest, &sendbuffer, size) – send a message from sendbuffer of length
size bytes to process dest.

• msgrecv(src, &recvbuffer, size, &status) – receive a message from process src
(or ANY process) into recvbuffer of length size; status is a structure designating
the source of the message and its length, messages that are larger than size are
truncated.

	 5	

Both primitives are realized using software interrupts that isolate user-processes from the
micro-kernel. All messages are buffered in the kernel at the receiver. The msgsend
operation causes a process to be blocked until a message is sent (i.e. injected into the
kernel, if the receiver is at the same host, or the network if it is on a remote host). Return
from this primitive allows the sendbuffer to be re-used. The msgrecv operation causes a
process to be blocked until a message is transferred into the recvbuffer from the kernel.
System calls, such as -- fork(), exec(), and exit() -- are implemented by sending a
message to a designated system task (c.f. Figure 1) which is capable of modifying kernel
data structures (e.g. pages, scheduling queue’s etc); distributed computing is achieved by
forwarding messages to a remote host via a mapping process rMP (c.f. Figure 1).

The micro-kernel leverages user-space separation of privilege to minimize kernel size.
In this approach, device drivers are given only the access rights needed to operate. Thus
they require no kernel intervention other than startup in order to execute. This allows
system calls serviced by user-space processes – the network stack, the filesystem, and so
on – to operate entirely in user-space. Borrowing terms used by MINIX, the system call
policies remain in user-space, but are joined by the system call mechanisms, in the form
of entire device drivers. Consequently, a significant amount of privileged code is excised
from the kernel, creating a small attack surface with few entry points.

It is instructive to contrast this approach with	 that used in MINIX: a number of user-level
tasks service system calls. These tasks – such as the process manager, filesystem, info
server, and so on – enforce system call policies and carry out bookkeeping, but they do
not contain the actual mechanisms to carry out a system call. That is left up to either
drivers or the kernel. However, even drivers are reliant on kernel code to perform their
functions, and they have their own set of system calls that are directly serviced by the
kernel. The result is a small reduction in kernel code and data, but a significant increase
in complexity.

Currently, Bear provides three user-level processes that service system calls. The
network process handles network connectivity and BSD-style socket calls, while the
keyboard and VGA processes handle user I/O calls directly. The keyboard and VGA
processes are stopgap solutions that are being used to bootstrap the system;	 they will
eventually be replaced by a secure shell implementation	 that will be the only method for
interacting with the system. A	 simple	 network	 file-‐system client is currently under
development, which will provide the only file storage mechanism available	 to user
processes.

Attack Mitigation

Despite efforts to insulate the kernel from user processes, there are still methods to get
code into the kernel memory space. For instance, while carrying out inter-process
communication, the kernel may buffer user data in kernel memory-space. Furthermore, a
hardware implant could potentially inject code directly into kernel memory. Once kernel
memory is contaminated, an attacker need only find a method to divert kernel execution
to this code.

	 6	

Bear’s treatment of kernel memory is designed to expressly deny this avenue of attack
and increase attacker workload. At all levels, Bear enforces the policy that no memory
region may be both writeable and executable simultaneously. In the Bear kernel, there
are four classes of buffers: those created by the kernel’s small-memory allocator, those
created by the kernel’s large-memory (page) allocator, static buffers in the kernel binary,
and temporary buffers located on the kernel stack. The small-memory allocator is used to
dynamically allocate space for data structures within the kernel (e.g., message buffers,
process structures, hash tables, linked lists, etc.). All memory regions returned by the
small-memory allocator are protected from execution by the XD bit in the kernel page
tables. The large-memory allocator provides free pages (or multiple pages) for process or
kernel use. If used by the kernel, pages from this allocator are protected from execution
via the XD bit in the kernel page tables. Static buffers in the binary and dynamic buffers
on the kernel stack are similarly protected from execution via the XD bit in the kernel
page tables. Thus, no buffers have both write and execute permissions enabled.

It is well-known that robust memory protections are not enough to secure a system	 from
return-oriented programming (ROP) even in the presence of non-executable buffers [10].
These attacks leverage small sections of the code already resident in memory, known as
gadgets [11]. The payload of a ROP exploit is a series of specially-crafted return
addresses, which link together gadgets to perform whatever action the attacker desires.
ROP exploit development is facilitated by a large codebase, such as GNU Libc (glibc)
[11].

To	 increase	 the	 difficulty	 of	 crafting	 these	 attacks,	 we	 emphasize	 the	 reuse	 of common
data structure abstractions throughout kernel	 and	 hypervisor	 so	 as	 to	 reduce	 the	 attack	
surface. Generic implementations of common data structures, including a linked list and
hash table, were created with flexibility in mind. Application-specific data is always
stored in these structures through the use of opaque void pointers, and application-
specific functionality is added through the use of function pointers in the API. The result
is lean, robust, multi-purpose code; for example, the function for removing a process
from the scheduler is also the function for removing an element from a hash table.

Mitigation of Corrupted Device Drivers

Unfortunately, device drivers are a frequent source of vulnerability [12]; they are always
resident and often developed by third-party vendors, whose priorities are fast turnaround,
inter-operability and performance, rather than security. Recall that the Bear micro-kernel
refreshes each device driver at nondeterministic intervals. This allows the kernel to
operate through attacks, preserving trust while denying the attacker the ability to persist
over tactically relevant timescales.

The upper and lower bound on the duration of a device driver instance is configurable,
and could be set higher or lower based on threat or mission deadlines. Driver refresh is
achieved by interrupting the driver, freeing its memory, and re-allocating new resources
for its replacement. The kernel then loads the driver’s gold-standard image from a

	 7	

protected, read-only store. As a result, compromised drivers are not able to persist over
long time-scales. Once driver regeneration is complete, the kernel schedules the driver,
and normal operation is resumed. Although the hardware state is lost, this is not typically
detrimental to a system functioning. In a server environment, it may involve a few
dropped packets, but these will be re-transmitted by normal protocols. Down-time
associated with refreshing the driver could be minimized by creating the new driver
process in the background using underutilized computing cores, although this has not yet
been necessary.

The main objectives for driver design in Bear are to protect the operating system from
corruption, encapsulate the device driver using hardware mechanisms, and facilitate on-
the-fly refresh of the drivers. Putting the driver in an isolated user-level process and
utilizing process refresh techniques accomplishes most of these goals. Unfortunately, a
compromised device driver has unique hardware resources at its disposal that open up
avenues of attack not available to most user processes.

Traditionally, the x86 architecture provides four rings (or levels) of privilege, numbered 0
through 3. Processes on the outside ring are the least-privileged and have no access to
critical functionality, while the innermost ring has full privileges. For obvious reasons,
user processes usually reside in the outermost ring 3, and the operating system resides in
ring 0. When considering where to put device drivers, rings 1 and 2 appear to be likely
candidates. Unfortunately, upon close inspection of hardware support for rings 1 and 2, it	
was discovered that ring 0 is not truly protected from code running in the intermediate
rings. Intel's memory management unit only supports two access levels – user (ring 3)
and supervisor (rings 0, 1, and 2). Thus, code running in rings 1 and 2 has exactly the
same memory access privileges as the kernel. This violates one of Bear’s primary design
principles – namely, complete isolation of device driver code from the kernel.

After searching, we discovered a workaround that restricts rings 1 and 2 to read-only
kernel access. There is a processor control bit that allows ring 0 code to ignore the
read/write control of a given part of memory, and this bit may only be modified from ring
0. By setting the kernel memory area to be read-only, ring 1 or 2 code would be unable
to modify kernel code or data. Upon entry to the kernel by interrupt or exception, the
processor control bit would be flipped to allow modification of the kernel data.
Unfortunately, this workaround has several problems. Giving read access to device
drivers is not ideal; additionally, the workaround would disable hardware write-
protection for kernel code while in kernel mode, leaving the door open to code
corruption. Instead, we chose to place device drivers in ring 3. Rings 1 and 2 actually
provide few meaningful benefits compared to ring 0. In contrast, ring 3 provides
complete isolation from the kernel through hardware mechanisms.

On modern commercial off-the-shelf (COTS) hardware, drivers often rely on several
overlapping mechanisms to communicate with a device: interrupts, port I/O, memory-
mapped I/O, and direct memory access (DMA). Peripheral devices use interrupts to
signal to the driver that they need attention; the request is then usually serviced through
one (or a combination) of the other methods. Port I/O uses special CPU instructions to

	 8	

access a “port address space” that is completely separate from main memory. At boot
time, peripheral devices are mapped into the port address space by the BIOS. In
memory-mapped I/O, the BIOS instead maps peripheral devices directly over main
memory; accordingly, device registers can be read and written to with regular load/store
CPU instructions. DMA dispenses with need for CPU intervention altogether by giving
devices direct read/write access to physical memory.

The x86-64 processors have several mechanisms to allow operating systems to monitor
peripheral I/O. The I/O permission bitmap controls access to individual I/O ports and thus
individual hardware peripherals. The bitmap may only be modified by code at privilege
level 0 (i.e., the operating system kernel). Any attempts to access blocked ports or to
modify the bitmap while at another privilege level will trigger an exception that may be
caught by the kernel. The offending driver could then be discarded and refreshed, or
some other action taken. Additionally, the x86 paging structures allow the operating
system to control memory-mapped I/O. Peripheral devices are mapped in at the physical
address layer; meanwhile, all CPU code accesses memory at the virtual layer. The
operating system controls the mapping between virtual to physical layers, meaning it can
expose or hide memory-mapped peripherals at will. Accessing a “hidden” physical
address is prohibited by address translation hardware, and code executing above privilege
level 0 is unable to modify the virtual-to-physical mapping without kernel intervention.

PCI resources present a unique challenge for driver encapsulation and isolation. All
devices on the PCI bus share a configuration space that provides device enumeration and
basic device communication via port I/O. Currently, Intel’s hardware mechanisms are
too coarse-grained to allow access to a single PCI device; they allow either all or none.
Thus, a malicious or unstable driver process could disrupt the function of other hardware
resources via the PCI configuration registers. This issue could be resolved by trapping to
the kernel and validating all accesses to PCI configuration ports, since they are at well-
known locations. It would be straightforward to enforce device-level separation using
this method; however, doing so would incur the overhead of a trap on every PCI
configuration-space access. For some drivers, this could incur small but non-negligible
overhead.

More alarming is the lack of control over DMA. Until recently, drivers were able to
command a device to read/write to any physical address via DMA. In most modern PCs,
only the number of address lines on the bus limits a peripherals access to memory. Thus,
on most machines, devices can read or write to any address. Mechanisms to limit DMA
access have recently become available in COTS hardware. The centerpiece of device
protection is the input/output memory management unit (IOMMU), which provides a
layer of address translation and access control between devices and physical memory.
On Intel platforms, the IOMMU is part of a larger set of device virtualization
technologies known as VT-d. Unfortunately, our available hardware does not support
this technology; however, an alternative interface between the kernel and hypervisor was
implemented, and a complete IOMMU solution could be added to the hypervisor with
little or no system design modifications. In order to correctly configure an IOMMU, the
hypervisor must know what memory addresses are being used for DMA. In Bear, the

	 9	

kernel relays this information to the hypervisor via the standard vmcall instruction. The
details of this work-around are described below in the section “Protecting the
Hypervisor.”

To demonstrate the use of the user-level driver structure, three device drivers were
written for Bear: a VGA terminal driver, a keyboard driver, and a network interface card
(NIC) driver. At startup, the kernel modifies the drivers’ privileges so they can access
their respective hardware. Unlike traditional drivers, they do not have access to kernel
code, kernel data, any other peripheral hardware interfaces, privileged instructions, or
control registers. The NIC driver process encapsulates Broadcom’s bce driver ported
from BSD, augmented with a front-end that communicates via message passing. One
driver process is spawned per NIC card present on the system (our blade servers have two
each). The driver utilizes all four forms of device communication: interrupts, port I/O,
memory-mapped I/O, and DMA. The kernel only intervenes for interrupts: interrupts are
translated into messages and sent to the corresponding driver process. Similarly, the VGA
and keyboard drivers encapsulate their respective hardware; we regard these as stopgaps
until full SSH support is available.

Protecting the Hypervisor

Recall	 that	 the	 normal	 role	 of	 virtualization	 is	 to	 share	 the	 underlying	 hardware	 between	
multiple	 operating	 system	 instances.	 In	 contrast,	 the	 Bear	 hypervisor exists primarily to
undermine network surveillance, deny persistence in the micro-kernel, and reestablish
trust in the micro-kernel. Re-establishing trust is performed by periodically reloading the
micro-kernel from gold-standard images located in the read-only store. This has the effect
of expunging root-kits, bots, or other malware. Additionally, the hypervisor strives to
utilize all available hardware mechanisms to provide protection for both itself and the
kernel.

To mitigate the threat of well-timed attacks, the hypervisor refreshes the kernel at
nondeterministic intervals. The upper and lower bound on the duration of a kernel
instance is configurable, and could be set higher or lower based on the threat
environment. To achieve kernel refresh, the hypervisor assumes control of the system,
frees the memory associated with the previous kernel, and allocates resources for the next
kernel. The hypervisor then loads the kernel binary and relinquishes control to the
kernel, which boots and resumes normal operation. Due to its code size, the microkernel
boots in less than 1 second; consequently, there was little reason to leverage multiple
cores to perform booting in the background. Currently, the hypervisor loads the kernel
binary from a standard SATA drive. Although sourcing a drive with a hardware write-
protect switch would have been ideal, we were able to emulate write-protection through
software. Although not as secure, it allowed us to verify read-only operation.

The hypervisor also provides protection for the kernel by leveraging extended page tables
(EPT). EPT is a hardware address translation capability present in newer Intel CPUs
(AMD has similar technology). EPT provides an extra layer of address translation that is
transparent to the guest operating system. This allows a hypervisor to manage physical

	 10	

memory while giving the guest the illusion of physical memory access. EPT also allows
the hypervisor to control what type of operations are allowed for a given memory region,
opening the door to MULTICS-like protections on the kernel.

Figure 5: EPT provides the guest-physical address space (yellow), allowing the
hypervisor to control physical memory without cooperation from the guest OS.

Bear’s hypervisor configures EPT to provide MULTICS-style read/write/execute controls
on both the kernel code and static data. Thus, any attempt to patch the kernel or execute
code located in a static buffer will result in a trap to the hypervisor. At that point, the
hypervisor can refresh the kernel or take an alternative action, such as invoke forensic
tools [13]. Hypervisor memory is inaccessible from the guest; it is not even mapped into
the address space. Figure seven shows the guest-physical address space after
configuration by the hypervisor.

Figure 6: Guest-physical address space protections enforced via EPT.

During development, it was noted that a small change to EPT functionality could greatly
improve the utility of execute protection: Almost all guest memory must stay marked as
executable (and writeable) because at boot time it is unknown which pages will become
kernel data and which will become user process text (code). However, user process
memory can also be execute-protected via the kernel’s page tables – little is gained by

	 11	

EPT’s double-coverage. If EPT’s execute protection were limited to kernel operation
(CPL=0) only, then all of the guest’s available memory (in addition to kernel data) could
be marked as no-execute in the EPT. In such an environment, operating a rootkit at
kernel level would be exceedingly difficult.

Although the proposed EPT no-execute functionality could be emulated by the
hypervisor, it would incur high overhead. The best solution would be hardware
modification of EPT functionality by Intel. Were this implemented, normal rootkit
operation would result in a trap to the hypervisor. Malware designers would have to craft
an entire malware payload using return-oriented programming or some other method of
circumventing execute-disable – this is no small task.

Currently, micro-kernel regeneration always uses the same micro-kernel image to deny
persistence and re-establish trust. However, nothing prevents the hypervisor from non-
deterministically varying the system configuration it brings up. In particular, each new
micro-kernel instance may use a completely different micro-kernel image. Moreover, the
presence of multiple NIC cards in the underlying hardware allows each new instance to
non-deterministically choose an alternative network connection. These may be physically
connected to completely different network segments, potentially behind different external
firewalls and proxies. From a surveillance perspective, the operating system appears to be
a completely different machine, running a different operating system, available for only a
short period at different parts of the network. This invalidates surveillance data with
every move, in the style of pioneering work conducted at BBN [14]. Our previous
research has already demonstrated these forms regeneration and network hiding for the
difficult end case associated with web servers, providing static pages, streaming, and
stateful content [15].

Current hypervisors do not provide convenient support for dynamically switching
network cards and introspection into connection information. Their role is to provide a
general sharing mechanism for the underlying network hardware in much the same way
as a bridge. The more simple multiplexing operations described here offer the
opportunity not only to inspect traffic but also change its characteristics for the purpose
of deception.

The traffic may project a completely different micro-kernel from that which is actually
executing. Camouflage may also project known vulnerabilities and be associated with
detection software. Our research group has already explored the concept of application-
level deception in a proof of concept camouflage module that presents a false server
fingerprint [16]. The camouflage has been demonstrated by disguising a Microsoft
Exchange 2008 server running on Windows Server 2008 RC2 to appear as a Sendmail
8.6.9 server running on Linux 2.6. It was able to reliably deceive Nessus OS detection,
Nmap OS detection and service detection, and RING OS detection into incorrectly
identifying the Exchange server.

	 12	

DMA Protection

In addition to regeneration and protection, the hypervisor must provide protected
mechanisms for device communication, including DMA. Virtualization software has
struggled with the problem of DMA for several years. Allowing guests to	 have	 access to
hardware resources traditionally involved “giving away the store,” since DMA could be
used to inspect and patch the hypervisor. Until recently, the working solution was to plant
a “thin” driver in the guest and block access to the actual device. The hypervisor would
operate the real peripheral and redirect data into the guest. Although functional, this
configuration introduces overhead and causes the hypervisor attack surface to balloon
significantly; all supported devices have to include a driver in the hypervisor.

Intel and AMD have both independently addressed this issue; their solutions are AMD-Vi
and Intel VT-d, respectively. These hardware standards both require an I/O memory-
management unit (IOMMU), which adds a layer of VMM-controlled address translation
between peripheral devices and main memory	 as	 shown	 in	 Figure	 7. Thus, devices can
only access memory ranges designated by the hypervisor.

Figure 7: Intel VT-d modifies the standard computer architecture [17].

VT-d also solves an issue related to guest-resident device drivers arising from the address
translation provided by EPT. To understand the issue, first consider a typical DMA
transfer carried out by a device driver in a kernel running directly on hardware (no
virtualization)	 as	 shown	 in	 Figure	 8. The device driver has a pointer to a buffer that it
needs to send to the device. The pointer is a virtual address, but the device can only
read/write to physical addresses. So the driver leverages the kernel’s knowledge of the
page tables, and calls a kernel function to translate the virtual address to a physical

	 13	

address. This physical address is then passed to the device, and the device reads/writes
directly from physical memory without intervention from the kernel.

Figure 8: A typical DMA transfer on a system without virtualization.

EPT introduces the guest-physical address space, which allows the hypervisor to translate
a guest-physical address to an arbitrary physical address. This causes devices and guest-
resident drivers to have inconsistent views of memory	 as	 illustrated	 in	 Figure	 9. The
driver believes it has access to physical addresses, when in fact they are guest-physical
addresses. Meanwhile, the device is unaware of any changes and uses guest-physical
addresses provided by the driver to access the physical address space. This may	 lead to
memory corruption via DMA.

Figure 9: The NIC uses a driver-supplied GP address as a P address, corrupting memory.

VT-d provides the hardware necessary to solve this problem	 as	 illustrated	 in	 Figure	 10.
Essentially, VT-d provides a “device virtual” address space. The hypervisor can
configure VT-d address translation to mirror EPT address translation, allowing devices to
transparently use guest-physical addresses.

	 14	

Figure 10: DMA transfer from guest-resident driver to NIC card with EPT and VT-d.

Unfortunately, the address translation features of VT-d are not present in our hardware	
and	 were	 not	 available at the time our servers	 were	 acquired. As a stopgap, we have
implemented a workaround shown	 in	 Figure	 11	 that allows the same functionality without
the full protection benefits. We leverage the kernel and the hypervisor to ensure that the
driver passes on true physical addresses to the device. The kernel is able to translate a
guest-physical address to a physical address using a call to the hypervisor (via the vmcall
instruction). The kernel then provides the driver with a mapping from guest virtual
addresses to physical addresses.

Figure 11: EPT Workaround for DMA– kernel requests P address from hypervisor.

In short, VT-d technology accomplishes two things: it allows a hypervisor to protect itself
from devices, and it allows guests to transparently and safely control peripheral devices.
Although our hardware does not have full support for VT-d, we have implemented a
workaround that gives similar functionality. Although it does	 not have the hardware
protection provided by EPT, it does allow a guest to control peripherals with almost no
hypervisor interaction. Thus, we were able to remove device driver code from the
hypervisor and place it at the less privileged user level.

	 15	

Quantifying the Attack Surface

Recall that the number of potential vulnerabilities in a codebase is roughly proportional to
the number of lines of code [3]; approximately 0.16 errors per thousand lines. The Bear
kernel and hypervisor were designed to extensively share code in order to minimize the
attack surface. As noted earlier, the two have considerable overlap in functionality. For
example, memory management, PCI device auto-detection, and interrupt configuration
must be performed at both levels. Accordingly, the Bear source code consists of self-
contained modules that can be compiled and used in either the hypervisor or the kernel to
provide these services. Furthermore, these code modules share generic implementations
of well-known data structures, including a linked list and a hash table. These flexible
implementations eliminate code redundancy.

To demonstrate the relative size of the Bear attack surface, we compare the number of
lines of code (LOC) in the kernel and hypervisor with those of other state of the art
systems. The lines of code were counted using the open-source code analyzer cloc using
only C sources and assembly code. As a result, the Bear results are accurate while the
other results represent a lower-bound. Collectively, the Bear hypervisor and micro-
kernel combined offer three orders of magnitude less code than alternative solutions.
This results into a small attack surface, aggressively applying the latest hardware
protection mechanisms, with a small number of predicted vulnerabilities.

Kernel Lines of Code
Bear Kernel 9,454 (7,399 shared code)

Linux Kernel 10,639,311
FreeBSD 3,707,252

MINIX 3.2.0 16,109
Table 2: Kernel Comparison: Lines of Code

Hypervisor Lines of Code

Bear Hypervisor 8,701 (7,399 shared code)
Xen 4.1 262,191 (+ Dom0 kernel)

VMWare ESX >150,000 (+ service terminal)
Table 3: Hypervisor Comparison: Lines of Code

The number of lines of code in the hypervisor and microkernel combined is 10,756,
yielding an expected defect incidence of less	 than	 two errors for mature code. The
corresponding attack surface for the micro-kernel executable image is 62.02Kbytes, the
hypervisor is 54.78Kbytes, bringing the combined attack surface size to 116.8 Kbytes.

Despite the desire for secure systems, the reality is that no system will see practical use
without acceptable performance. To establish a baseline, the Bear system was
benchmarked against Ubuntu Linux using the standard AIM9 benchmarking suite to
determine:

	 16	

• How the un-optimized Bear system compares in performance with a highly

optimized standard system.
• What impact the Bear Hypervisor has on performance, reflecting the core cost of

resilience.

Obviously, our presumption is that Bear will be slower: the Linux kernel was released in
1991 and has been under continuous improvement and optimization ever since. In
contrast, Bear is a research prototype developed primarily to explore resilience over the
last two years. In addition, Bear uses a simple file system and a simple, slow disk driver
as a stopgap measure until a more suitable read-only file store is integrated. Thus, any
benchmark involving file operations are dominated by the disk driver’s (lack of)
performance.

The AIM9 suite is summarized in Table 3 and consists of 5 benchmark categories; the
second column indicates the status of the port to Bear. The core benchmark routines
employed are:

• Add: Conducts 4000 iterations, where each iteration consists of 1 million
additions on short values, 1 million additions on integer values, and 1 million
additions on long values. A total of approximately 12 Billion addition operations
are executed. The Mul and Div benchmarks are functionally the same as Add but
use multiplication and division.

• Fork: Conducts 1000 iterations, where each iteration performs one fork operation
followed by exiting the child process.

• Exec: Conducts 1000 iterations, where each iteration performs one fork, followed

by the execution of a small binary that returns 1. Note that this operation uses the
file system.

Benchmark Routine Status Bear Relevance
Integer Operations:

Add / Mul / Div ✔ Context switching, Caching, Scheduling

Syscalls: Fork / Exec ✔ System Calls, Message Passing System

File System ✖ Awaiting NFS implementation
Network Stack ✖ Not yet ported

Numerical Operations ✖ Not yet ported
Table 4: The AIM9 Benchmark Suite

Bear was set to context switch every 10msec by default; therefore the Add benchmark,
for example, involves approximately 15,000 context switches. Although this number is

	 17	

small compared to the number of addition operations, the benchmark would highlight
adverse performance in memory management or interrupt handling. In contrast, Linux
includes optimizations not present in Bear that allow processes to run for longer time
slices based on the system state.

Routine Ubuntu 12.04 Bear w/o Hypervisor Bear w/
Hypervisor

Add 144 sec 150 sec 151 sec
Mul 250 sec 263 sec 261 sec
Div 1335 sec 1807 sec 1812 sec

Fork 0.3 sec 3.2 sec 3.2 sec
Exec 0.3 sec 3.2 sec 3.2 sec

Table 5: Performance Study Results

Our primary conclusion is that the additional overhead created by the hypervisor, our
source of kernel resilience, is negligible. All 5 tests show that enabling the hypervisor
does not lead to a significant performance loss – either in time or CPU cycles.
Furthermore, Ubuntu 12.04 running on a Linux kernel 2.6.38-15-generic is only 5% faster
than Bear on the core Add and Mul benchmarks. As expected, the optimizations present
in Ubuntu result in better performance on other benchmarks. However, there exist simple
optimizations to e.g., Bear’s admittedly naïve implementations of fork and exec, that
could substantially increase performance with little effect on attack surface.

Extending Trust to Distributed Applications

Modern computing is no longer centered on the single-machine, single-program
paradigm. Falling under the broad moniker of cloud computing, an array new products
and services now take advantage of the trend toward multi-core architectures and the low
cost of COTS hardware to provide superior performance, efficiency, or convenience.
However, this implies that large numbers of hardware nodes, the accompanying software
stacks, and the communication paths between them are now all critical points of failure
and vectors for attack. Moreover, the presence of a common operating system on every
machine has the effect of amplifying vulnerabilities across the cloud. To circumvent this
vulnerability amplification, we are investigating methods to add diversity through both
source-to-source transformation and run-time translations. These changes will generate a
large-number (>1 million) of semantically equivalent gold-standard images for the same
small operating system source code. As a result, we would expect every instance of the
Bear system to be unique and continually changing over time, mitigating the ability to
use static code analysis to determine vulnerabilities. The core mechanism to discard the
micro-kernel and re-establish trust allows the new instance to be a completely different
runtime image.

The minimalist MPI-like message passing system, rMP, described previously is sufficient
to provide system calls and inter-process communication. In addition, it has been used to
express all three of the prevalent concurrent problem solving strategies that utilize
functional, domain, and irregular decompositions. For the purpose of experimental

	 18	

evaluations, we have developed a suite of message-passing applications that exemplify
these strategies involving numerical integration, iterative solution of partial differential
equations, and a non-trivial LiDAR processing algorithm respectively [18]. However, the
API also provides the necessary and sufficient functionality to implement process
replication and mobility in the cloud. These capabilities are in turn sufficient to build
distributed forms of resource management and resilience: processes are replicated and
dynamically regenerated to assure that an application may proceed in the presence of
malicious code or failures. The net impact of this approach is to allow the level of system
assurance to be maintained, ensuring that a military mission may continue unabated [19].

Figure 12 illustrates how these ideas operate. At the user level, a concurrent application is
expressed as processes that cooperate through msgsend and msgrecv message-passing
primitives described earlier. A middle-ware layer implements a resilient view that
replicates each process and organizes communication between the resulting process
groups. Point-to-point communication among user processes is implemented by multi-
cast communication between process groups. Individual processes within each group are
mapped to different computers to ensure that a single attack or failure cannot impact an
entire group.

Figure 12: Dynamic process regeneration

The base of Figure 3 shows how the process structure responds to an attack or failure: An
attack perpetrated against processor 3 causes processes 1 and 2 to fail or to portray
inconsistencies in behavior or communication when compared to other replicas within
their respective groups. These inconsistencies are detected either by behavioral alerts,
communication timeouts, message comparison, or from external sources (e.g. SIGINT,
Humint). Inconsistencies trigger automatic process regeneration: the consistent copies of
processes 1 and 2 are used to dynamically regenerate a new replica and migrate it to

	 19	

alternate processors 4 and 1, respectively. As a result, the process structure is
reconstituted, and the application continues operation with the same level of assurance.

The transparent realization of resilience on large-scale concurrent architectures
necessitates an automatic approach to process scheduling. Our early work in this area
resulted in a general algorithm for load balancing based on the heat diffusion equation
[20] that can be implemented using the message passing API. This approach has several
attractive properties: it uses a simple, fast, scalable algorithm involving only nearest
neighbor communication; additionally, global progress and convergence are guaranteed
through well-established mathematical analysis. The algorithm has been shown, through
simulation, to simultaneously balance multiple independent load distributions over large-
scale architectures, even with huge random load injections. Vector based extensions to
the algorithm allow multiple resources (including communication, memory, and CPU
load) to be balanced simultaneously [21].

Conclusion

Military systems have gained tremendously from the cost and flexibility benefits afforded
by widespread adoption of commercial off	 the	 shelf	 (COTS)	 technology -- to the point
where it is now difficult to imagine how we might operate, with similar levels of
efficiency, using non-COTS methods. However, in times of tension, critical mission
capabilities must continue to operate, even if major components of “the network” are
unavailable and the systems upon which we rely are repeatedly compromised by error,
fault, or malicious actions. It therefore behooves us to apply Occam’s razor to pare back
the layers of complexity that have been thrust upon us by commercial vendors, in light of
the controlled environment in which DoD operates, to improve resilience and increase
attacker workload.

Our approach is to use COTS subsystems, accepting their imperfections, but augmenting
them with ideas from the fault-tolerance, distributed computing, and encryption
communities. The research described in this paper explores how we might pursue this
goal using three basic precepts:

• Don’t trust what you have -- validate, replicate and regenerate,
• Don’t advertise what you do – hide and camouflage, and
• Don’t be predictable – instead be mobile and non-deterministic.

The Bear system uses overlapping regenerative techniques, combined at every layer of
the system, from the user to the hardware. These methods deny surveillance by
continually invalidating surveillance data, hiding in the network, and using camouflage.
Persistence is denied by non-deterministically replacing, refreshing, replicating, and/or
relocating components so as to continually re-establish trust. The methods can be
incorporated individually, as independent modes through loadable modules, or
collectively and continuously for critical missions.

	 20	

The desire for field-upgradable hardware has opened a new dimension to malicious code
in firmware and/or flash [22]. In consequence, there are some simple additions to COTS
systems that are particularly valuable for improving resilience described here. These
include read-only memory from which to draw encrypted gold-standard images that
represent the code of final recourse, removable links on the primary write-lines to core
flash components, and/or an out-of-band network channel with associated micro-
controller to control flash updates and/or provide a forensic interface. The latter facility
can be used to repeatedly re-flash devices when they are not in use or at designated
system refresh times.

	 21	

References

[1] W. A. Arbaugh, D. J. Farber, and J. M. Smith. “A secure and reliable bootstrap

architecture.” In Proceedings of the 1997 IEEE Symposium on Security and
Privacy (SP '97). IEEE Computer Society, Washington, DC, USA, 65-. 1997.

[2] B. Blunden. The Rootkit Arsenal: Escape and Evation in the Dark Corners of the
System. USA: Jones and Bartlett Publishers, Inc. 2009.

[3] Pandey and Tiwari, “Reliability Issues in Open Source Software.” International
Journal of Computer Applications, vol. 34 issue 1, pp. 34-38. 2011.

[4] Corbató, Fernando J., and Victor A. Vyssotsky. "Introduction and overview of the

Multics system." Proceedings of the November 30--December 1, 1965, fall joint
computer conference, part I. ACM, 1965.

[5] Tanenbaum and Woodhull, “Operating Systems: Design and Implementation,”

Prentice Hall, 2006.

[6] The MPI Forum. “MPI: A Message Passing Interface, version 2.2.” Knoxville, TN:

University of Tennessee. 2009.

[7] VMware, E. S. X. "Server: User's Manual." Version 1 (2011): 122-124.

[8] Matthews, Jeanna N., et al. Running Xen: a hands-on guide to the art of

virtualization. Prentice Hall PTR, 2008.

[9] Habib, Irfan. "Virtualization with kvm." Linux Journal 2008.166 (2008): 8.

[10] c0ntex. "Bypassing Non-Executable-Stack During Exploitation with Return-to-

libc." Open Security Group. 15 Nov. 2012 http://www.open-security.org/texts/4

[11] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti and E. Kirda, "G-Free: Defeating

Return-Oriented Programming through Gadget-Less Binaries," in Proceedings of
the 26th Annual Computer Security Applications Conference (ACSAC), New York,
2010.

[12] Chou, Andy, et al. An empirical study of operating systems errors. Vol. 35. No. 5.

ACM, 2001.

[13] Kuhn, Stephen, and Taylor, Stephen. “A Survey of Forensic Analysis in Virtualized
Environments.” Tech. rep., Dartmouth College, Hanover, New Hampshire, 2011.

[14] D Kewley, R. Fink, J. Lowry, and M. Dean, “Dynamic Approaches to Thwart
Adversary Intelligence Gathering.” DARPA Information Survivability Conference
and Exposition, vol. 1 pp. 176-185, 2001.

	 22	

[15] S. Kuhn and S. Taylor, “Increasing Attacker Workload with Virtual Machines”,

submitted to MILCOM 2011. (Available as Thayer Technical Report TR11-002 at
http://thayer.dartmouth.edu/tr/reports).

[16] M. Kanter and S. Taylor, Camouflaging Servers to Avoid Exploits, submitted to
MILCOM 2011. (Available as Thayer Technical Report TR11-001 at
http://thayer.dartmouth.edu/tr/reports)

[17] Intel Corporation, “Intel 64 and IA-32 Architectures Software Developer's Manual
Volume 3A: System Programming Guide, Part 1.” August 2012 edition.

[18] C. Nichols, S. Taylor, J. Keranen, G. Schultz. “A Concurrent Algorithm for Real-
Time Tactical LIDAR.” IEEE Aerospace Conference Proceedings, 2011.

[19] K. McGill and S. Taylor, “Operating System Support for Resilience,” Submitted to
IEEE Transactions on Reliability, (Available as Thayer Technical Report TR11-003
at http://thayer.dartmouth.edu/tr/reports).

[20] A. Heirich and S. Taylor "Load Balancing by Diffusion", Proceedings of 24th
International Conference on Parallel Programming, vol 3 CRC Press pp 192-202,
1995. Outstanding Paper Award.

[21] J. Watts, and S. Taylor, "A Vector-based Strategy for Dynamic Resource
Allocation", Journal of Concurrency: Practice and Experiences, 1998.

[22] Dell, Inc. “PowerEdge R410 replacement motherboard contains malware,”

http://en.community.dell.com/support-forums/servers/f/956/t/19339458.aspx, Jul 10
2010.

