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Abstract 

 

Historically, full memory encryption (FME) has been propounded as a mechanism to 

mitigate vulnerabilities associated with code and data stored in the clear (unencrypted) in 

random access memory. Unfortunately, until recently the CPU-memory bottleneck has 

represented a roadblock to using this concept to design usable operating systems with 

acceptable overheads.  Recently however, a variety of commodity processors, including 

the Intel i7, AMD bulldozer, and multiple ARM variants, have emerged that include 

security hardware -- in particular, encryption engines -- tightly integrated on-chip. This 

innovation opens the door to a new generation of operating systems that protect data by 

encrypting code and data in RAM.  This thesis explores this idea and introduces a 

collection of novel operating system technologies that provide automated, transparent 

confidentiality and integrity protection via memory encryption.  These techniques raise 

the difficulty for attackers, making it significantly more challenging to determine the 

vulnerabilities present on a system, apply the same attack vector against multiple hosts, 

steal sensitive information, reverse engineer code, modify data at rest or in flight, and 

inject code onto a platform. 
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Chapter 1: Overview 

 

 

1.1 Problem:  

 

How can attacks against plaintext code and data residing in large random 

access memories be mitigated? 

 

1.2 Hypothesis:  

 

The vulnerability associated with plaintext in memory can be eliminated, 

with reasonable performance impact, by memory encryption on security-

enhanced processors. 

 

 

1.3 Background Synopsis 

Trust as defined in computing systems is concerned with providing guarantees on 

functionality and security associated with a system design.  Typically trust emanates from 

a careful combination of core hardware and software components that in tandem form a 

trusted computing base (TCB).  This base is often used either to protect the critical core 

associated with a sensitive or proprietary software or it can be amplified to protect larger 

portions of a system.  
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In operating systems, a trusted base can be used to protect core kernel functions. 

Several examples of this include system bootstrapping via a trusted computing module 

(TPM) [Kauer 2007], data-at-rest protection through full-disk encryption [Casey et al. 

2011], data-in-transit protection through link-level encryption [Karlof et al. 2004], and 

kernel operation using access control and protection schemes [Karger and Schell 1974]. 

Although all these technologies are valuable, they are not sufficient in-and-of themselves. 

They only guarantee that the system began in a trusted state and that data was 

confidential before it was decrypted. Unfortunately, systems become vulnerable 

whenever code and data are stored in the clear (unencrypted) within random access 

memory.  This creates numerous vulnerabilities at every level of the software stack. 

These vulnerabilities have consistently been exploited to gather confidential information 

(such as encryption keys) and inject malicious code in order to overcome access controls 

and other protections.   

1.4. Approach 

Recently, a new generation of commodity processors have appeared that include 

security technologies, such as encryption engines, on-chip within the trusted boundary 

provided by the processor. These processors include the Intel i7, AMD bulldozer, and 

multiple ARM variants. The creation/use of such processors begs the question: Can these 

technologies be leveraged with sufficiently low overhead in order to improve operating 

system security? This thesis explores the idea of enhancing security through memory 

encryption. In particular, it introduces three new technologies: 

• Static Encrypted Processes: This technology employs one-time decryption within 
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the trusted boundary. Since the one-time cost of encryption is amortized over the 

life of a programs execution, its overhead is negligible. The technique can be used 

to protect industrial control systems employing microcontrollers and other real-

time processors. These devices typically lack memory management and make 

little to no use of cache.  

• Dynamic Encrypted Processes: This technology provides a general, full memory 

encryption mechanism for code and data. It is appropriate to any multi-tasking 

operating system that employs a memory management unit (MMU) and cache 

including smart phone and other mobile computing devices.  Two micro-

benchmark programs targeting the specific areas where overhead is introduced 

(context switching and cryptopaging of heap and code) show reasonable 

performance impact of approximately .12% and 1.2% per minute respectively 

given a page size of 4 KB and typical mobile smartphone workloads.     

• Mutually Distrusting Processes: This technology extends dynamic encrypted 

processes to protect processes from each other by uniquely keying each process. 

At its finest granular level, this technique induces a performance penalty of 

approximately 1920 cycles or 2.4 microseconds per context switch (or about 480 

microseconds per minute) for the key search—an extremely small overhead for 

the additional protections afforded. 

Collectively, these technologies increase attacker workload by ensuring that both 

code and data are always encrypted outside the trust boundary afforded by the processor. 

To overcome this barrier requires physical access and exotic reverse engineering 

techniques, such as acid etching, that are generally the domain of only a few, highly 
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skilled, internationally recognized, specialists in reverse engineering. A side-effect of the 

approach is that it introduces a synthetic diversity into code and data: every processor’s 

image is completely different in RAM. This makes it significantly more difficult to 

determine the vulnerabilities present on a particular system, use the same attack vector 

against multiple hosts, or steal sensitive code and data, perform reverse engineering of 

code, modify data, and inject code. 

1.4 Contributions 

The core contributions of this thesis are: 

• The first practical full-memory encryption system implemented on a general-

purpose commodity processor. 

• A survey and comparative analysis of memory encryption techniques covering 

three decades of research with proposed solutions; these employ widely varying 

assumptions and experimental conditions [Henson and Taylor 2014]. 

• A collection of novel memory encryption techniques providing synthetic diversity 

and increasing attacker workload. These techniques protect against software and 

hardware based confidentiality and integrity attacks; the techniques are portable to 

currently deployed general-purpose, security-enhanced processors [Henson and 

Taylor 2013A and B]. 

• Analytical results that include performance benchmarks and analysis on the 

overhead of memory encryption down to process segment granularity [Henson 

and Taylor 2013B]. 

• Empirical evidence and analytical analysis that demonstrate protection through 

memory encryption against confidentiality and integrity attacks.  
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• Techniques to employ self-modifying code within the memory hierarchy to 

achieve memory encryption. 

These techniques and technologies have been demonstrated in proof-of-concept 

implementations and exemplars.  Memory encryption has been implemented on the ARM 

Cortex A8 processor to provide automatic and transparent protection for applications. 

This is achieved through extensions to a secure microkernel – Bear – under development 

within our research group at Dartmouth.  These extensions involve modifications to 

linker scripts, initialization, process creation and context switching routines as well as 

new modules for interfacing with the A8’s on-chip encryption decryption unit (EDU).  

The ideas have been demonstrated by encrypting processes while they reside in external 

RAM (eRAM) thereby adding synthetic diversity.  The concepts cover application 

deployment regimes that range from unsophisticated microcontrollers, with no memory 

management unit (MMU) and cache, to full-functioned multi-processing operating 

systems utilizing a memory management unit (MMU) and L1/L2 cache.  Various 

granularities of protection are considered from a complete code base to individual 

process.  Finally, exception-handling routines have been developed and experiments 

executed to understand the protections afforded against code and data injection.   

1.5 Scope and Assumptions  

The work described in this thesis extends the base of technologies available for 

trusted computing.  While definitions of trusted computing abound, in this thesis it is 

defined as the process by which a trusted subset (software and hardware) of a system, 

known as the trusted computing base (TCB) is amplified to provide security assurances 

about the operation of the larger application or system [Smith].  Hardware components of 
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the traditional TCB include encryption coprocessors, random number generators, and 

small amounts of protected space for operation on sensitive code and data.  The main 

application of trusted computing in operating systems design is for “trusted boot” in 

which the TCB checks the integrity of each component in the boot process, perhaps 

halting the boot process when a problem is discovered [trusted boot].  Additionally, the 

TCB has been used as a means for providing digital rights management.  While the 

underlying security and integrity of hardware are often assumed to be axiomatic by those 

programming higher layers, this is not typically the case [Arbaugh et al. 1997 Aegis].  

The inclusion of security hardware within commodity processors means that these 

general purpose CPUs may now be treated as part of the TCB.  While the processor 

boundary may not have been designed to meet stringent guidelines, such as the PCI, it 

does, however, provide natural barriers to penetration and observation [Vandana 2008].  

The work in this thesis seeks to expand upon current trusted computing capabilities such 

as trusted boot by continuing to protect applications dynamically as they execute.  While 

memory encryption provides significant protection against multiple attack vectors, it 

should be used as part of a defense-in-depth solution including other trusted computing 

capabilities such as trusted boot as well as encryption of data-at-rest.   

Any security can be circumvented given enough resources and motivation and 

memory encryption is no exception.  The goal of the work, to increase attacker 

workload, can be applied under two alternative scenarios:  In any time-sensitive 

operation, as occurs on the battlefield, an increase in attacker workload serves to force the 

adversary outside of the useful timeframe of any sensitive data collected.  For a 

commercial example, the increased workload would influence the attacker to choose a 
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weaker attack surface, on a different device (preferably at another business). 

The use of any encryption technique begs the question of key generation, delivery 

and escrow.  Additionally, protecting programs from static analysis means that they must 

only be stored in an encrypted form.  While this work explores some core ideas that can 

be applied to satisfy these questions, they have not been fully implemented.  This thesis 

concentrates on designing and quantifying memory encryption systems on a general-

purpose processor; other issues, while important, are ancillary. 

Finally, it is useful to point out that there are many similarities between the goals 

of sophisticated attackers and law enforcement with regard to the acquisition of sensitive 

information from the memory of a device.  Therefore, throughout this thesis, the terms 

attacker and forensic investigator may be considered synonymous. 

1.6 Outline of the Thesis 

The structure of the thesis is divided into seven chapters: 

Chapter 2 begins with the background and motivation for memory encryption.  

Next, a comprehensive survey of the past three decades of memory encryption research 

including a ground-truth comparative analysis is presented.  Closely related works are 

included at the end of chapter 3 such that the latter part of chapter 2 (beginning with 

section 2.2) may be skipped without impacting the reader’s understanding of the thesis. 

Chapter 3 introduces the threat model, core ideas, and fundamental protections 

associated with memory vulnerabilities and memory encryption. This serves to provide 

background and motivation for the remainder of the thesis.  
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Chapter 4 describes Static Encrypted Processes, a memory encryption technology 

created as a part of this research. It describes the design philosophy, the encryption 

decryption unit (EDU) used, bootstrapping details, and other implementation details.  

Chapter 5 describes Dynamic Encrypted Processes, its design philosophy, and 

extensions to include the use of cache and the MMU.  This chapter also explores the 

issues associated with self-modifying code in memory encryption systems. 

Chapter 6 extends the ideas presented in Chapter 4 to protect Mutually Distrusting 

Processes (MDP) from each other via an increase to key scope granularity.  Examples of 

MDP’s include applications (apps) downloaded from online stores and the issue of covert 

channels is discussed and evaluated in this context.  Additionally, experimental results 

evaluating the security properties provided by memory encryption are provided. 

Chapter 7 concludes the thesis, including directions for future research and 

observations. 
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Chapter 2: Survey and Comparative Analysis of Memory Encryption 

Techniques1 

Chapter 2 presents a survey of memory encryption techniques spanning the past 

three decades, as well as a thorough comparative analysis of those techniques.  While all 

of the information gathered in the survey helped to shape and form the direction of this 

thesis it is not strictly necessary for the reader’s understanding, however, the beginning of 

this chapter (here through section 2.1) and the conclusion (section 2.9) provide necessary 

background.     

Encryption has been an important part of secure computing for decades, first used 

in the Department of Defense (DoD) and national agencies and then publicly beginning 

with public-key encryption in 1977 [Mel et al. 2001].  As public use of computers 

continued to grow, so did the need to secure sensitive information.  In 1991, Phil 

Zimmerman released the first version of Pretty Good Privacy (PGP) allowing anyone to 

encrypt e-mail and files.  In 1995, Netscape developed the secure sockets layer (SSL) 

protocol combining public and private-key encryption to protect online financial 

transactions.  Indeed, encryption of data-in-transit has become accepted practice 

especially when interacting with entities where sensitive information is common (e.g. 

banking, medical, etc.).   

Although a more recent innovation, full disk encryption (FDE) in commodity 

computer systems provides confidentiality of all data stored on disk (i.e. data-at-rest). 

1 Significant portions of this chaptered were published in: 

HENSON, M. and TAYLOR, S. Memory Encryption: a survey of existing techniques.  ACM Computing 
Surveys 46, 4, Article 53. (March 2014). 
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Recent advances to the overall speed of processors and hardware-based encryption have 

resulted in several commercially viable FDE implementations. Software approaches to 

FDE include TrueCrypt, PGPDisk, FileVault, and Bitlocker. In addition, multiple hard 

drive manufacturers offer self-encrypting drives (SED) in which encryption is handled 

entirely by the hard drive microcontroller. Several factors have resulted in increasing 

adoption of FDE technologies by both individual users and system developers [Brink 

2009], [Muller et al. 2011]. Regulations, such as Sarbanes-Oxley and the Health 

Insurance Portability and Accountability Act (HIPAA), have increased the requirement 

for privacy. The advent of mobile computing and increased movement of information 

over the Internet have raised concerns regarding physical access to data. Finally, 

numerous data breaches have been publicized raising awareness of vulnerabilities.  

2.1 Vulnerabilities and Exploits --Motivation 

Current operating system designs have sought to utilize a static base of trust and 

extend trust into software through deliberate layering [Arbaugh et al. 1997]. Modern 

computer systems, even those protected by full disk encryption (FDE) [Brink 2009], 

exhibit a major weakness in that code and data are stored in the clear, unencrypted, 

within memory and its connections.  These sensitive details are not only available to 

applications.  They are known to persist in multiple unexpected locations (kernel and 

application), for longer than traditionally thought, even after an application exits [Chow 

et al. 2004], [Dunn et al. 2012], [Tang et al. 2012]. Unfortunately, this invalidates widely 

held basic security assumptions rendering it possible to gather confidential information, 

including encryption keys, passwords, PINs etc. that can be used to undermine trust 

[Halderman et al. 2008], [Boileau 2006], [Steil 2005], [Henson and Taylor, 2012]. To 
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exacerbate the problem, memory vulnerabilities extend to every level of the software 

stack and the opportunities for exploitation extend well beyond physical attack to include 

remote attacks over the Internet.   Techniques have evolved that allow malicious code to 

be injected into device drivers, operating system kernels, and user processes.  

 

 

Figure 1: System with Full Disk Encryption but Vulnerable Memory and Connections 

To exploit memory vulnerabilities, numerous attack vectors have been developed.  

In a cold boot attack, for example, memory is frozen using a refrigerant and then 

removed from the computer. It is then quickly placed into a specially designed system 

that reads out its content, targeting encryption keys and other sensitive information.  This 

particular attack has recently been shown to be applicable to smart phone devices as well 

as traditional desktops via the forensic recovery of scrambled telephones (FROST) 

operating system [Muller et al. 2012].  Besides capturing the encryption key, FROST was 

used to capture other code and data to include photos, websites visited, e-mails, contact 

lists, networking credentials and complete ELF binaries. While this approach is novel, the 
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idea of recovering encryption keys from memory has been described as early as 1998 

[Kaplan 2007]. Even without cooling, some information persists in RAM for several 

minutes [Halderman et al. 2008]. However, cooling slows down the rate of data loss, 

reducing recovery errors [Chhabra 2011b].  

Direct memory access (DMA) attacks make use of Firewire, PCI and/or PC card 

protocols [Muller et al. 2011].  Direct access of memory allows an attacker to capture a 

copy of the entire RAM space and/or modify memory contents.  The attacks have been 

demonstrated (with the release of “tools”) in black-hat settings for bypassing Windows 

login screens.  The routine for checking the validity of the required password is found 

and replaced with NOP’s allowing any password to be used to gain access to the attacked 

system [Boileau 2006].  Unfortunately, these techniques are equally accessible to 

legitimate law enforcement agencies that use it for forensics investigations and criminal 

organizations and other attackers as well [Freiling and Vomel 2011].   

One particularly effective attack, bus-snooping and injecting, allows information 

to be captured or inserted via the bus lines between system components [Boileau 2006].  

This exploitation method has been used to undermine the Xbox gaming system. This 

system was specifically designed to provide a secure chain of trust for enforcing digital 

rights management (DRM).  Bus-snooping was used to capture keys as they transited 

between read-only-memory and the CPU.  These keys were then used to decrypt the 

secure boot loader, thus undermining the entire chain of trust.  Subsequently, low-cost 

“mod” chips were developed that can be soldered into the gaming system bus, allowing a 

user to bypass DRM restrictions and play pirated games [Steil 2005].  Alternatively, the 

same chips can be used to run alternative operating systems on the gaming hardware 
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allowing it to be used for illicit purposes [Rabaiotti et al. 2010].  Far from being academic 

or theoretical in nature, these exploits of memory vulnerabilities have been used 

extensively by criminals for profit. 

As encryption of data at rest becomes the status quo, attacks will begin to target 

vulnerable RAM.  In effect, increasing adoption of these techniques has pushed the 

vulnerabilities associated with persistent data stored on disk down into the next level of 

the memory hierarchy, which itself has proven equally vulnerable.  For example, memory 

scraper viruses, which target selective information from the volatile memory of point of 

sale (POS) applications running along side them, have been increasing since their 

appearance in 2008 [Baker et al. 2008].  These viruses are a subset of a larger problem 

with mutually distrusting processes (MDP).  Mutually distrusting processes are those, for 

example, that are downloaded from an application store on a smart phone or tablet.  

Recent research suggests that between 0.20% and 0.47% of applications downloaded 

from alternative Android application stores are malicious while 0.02% downloaded from 

the official Android Market are malicious. While Apple goes to great lengths to review 

applications for security issues, malicious applications have been approved and 

downloaded from the official Apple application market as well [Jekyll on iOS 2013].   

Fortunately, access to information in conventional dynamic RAM normally (i.e. 

not in the case of a cold boot attack) presents an adversary with only a fleeting 

opportunity to obtain sensitive information between power cycles.  However, dynamic 

RAM is being augmented or replaced with new non-volatile alternatives such as flash 

memory, magnetic RAM, and ferro-electric RAM.  These provide several benefits 

including energy efficiency and tolerance of power failure.  Flash memory has also been 
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used to augment traditional RAM in the Vista and Windows 7 “ready boost” feature, 

whereas the other two technologies are potential RAM replacements.  Unfortunately, 

these non-volatile memories allow information and attacks to persist indefinitely [Enck et 

al. 2008]. Interestingly, Microsoft has anticipated the security issues associated with 

persistent memory and has designed the ready boost feature to encrypt all contents of 

flash making it difficult for forensics investigators to recover useful data [Hayes et al. 

2009].  If these memories are adopted in future architectures, without adequate attention 

to encryption or other protections, there is the potential that memory based attacks will 

become more prevalent.   

There are three general attack vectors as described in [ARM security]: software 

based hack attacks, low-budget hardware attacks known as shack attacks, and resource 

intensive lab attacks. The attack vectors previously described fall into the first two of 

these categories. While many efforts concentrate on mitigating software-based attacks, 

such as buffer overflows, comparatively little effort has gone into preventing shack 

attacks.  This may be partially explained by the difficulty in addressing attacks where an 

adversary has physical access of a system, for example, insiders.  Shack attacks include 

those highlighted above such as bus-snooping and injecting, cold-boot attack and DMA 

attacks.  Lab attacks involve significant time and equipment and examples include 

etching away chip walls with acid to reveal internal bus lines for microprobing, or 

electromagnetic and power analyses among other side channels [Ravi et al. 2004]; 

[Kocher et al. 1999]. For systems relying on software based encryption, key expansion 

tables (e.g. AES) are subject to cache attacks; a malicious process (MDP) tracks and 

14 
 



 

times cache accesses [Osvik et al. 2005], [Mowery et al. 2012].  The typical target of all 

of these attacks is the encryption key hidden within the chip boundary.  

In general, encryption is used to provide four basic properties of protection: 

confidentiality, integrity, authentication, and non-repudiation.  In trusted computing and 

operating system security these properties are realized through authenticated booting, 

ensuring that program code is not changed before it is loaded into memory, memory 

authentication, ensuring that program code is not changed during use, and attestation, 

ensuring that hardware and software have not been altered. Trusted software components, 

which make up part of the trusted computing base (TCB), are booted and verified 

producing a chain of trust, without which the security mechanisms could be 

compromised before the system is initialized. While few works discuss the 

implementation of these other mechanisms, most discussions assume that these 

components are functional and thus focus on the overhead of ME in the steady-state.  

Other important assumptions often include mechanisms for secure code delivery, key 

creation and escrow, inter-process communication, and I/O protection among others.  

Memory authentication is often closely associated with memory encryption solutions; 

however, a thorough survey of memory authentication mechanisms is available [Elbaz et 

al. 2009].  

Memory encryption is solely concerned with the confidentiality of data and code 

during execution, with the express purpose of increasing attacker workload associated 

with crafting exploits and stealing sensitive information.  It is interesting to note, 

however, that memory encryption also hampers attempts to inject code, which is 

generally assumed to require memory authentication.  An adversary lacking an 
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encryption key would be unable to successfully change an encrypted binary, as 

decryption would result in corrupt code and likely program termination [Barrantes et al. 

2003].  Early work associated with full memory encryption (FME) was dominated by the 

desire to provide digital rights management and in particular to prevent the theft of 

intellectual property associated with program source code.  This is still the primary 

purpose in some systems (e.g. gaming systems), but more recently these techniques have 

become recognized as a method for removing vulnerabilities and protecting system users. 

There are two general approaches to providing confidentiality with encryption 

that are commonly used in computer architectures based on symmetric or public key 

encryption techniques. Symmetric key encryption is based on a shared secret (key), and is 

generally held to be more efficient (i.e. on the order of 1,000 times faster) but it does not 

provide non-repudiation, and it requires a non-trivial trusted key distribution scheme 

[Kaplan 2007].  Three common algorithms are typically used to realize this approach 

based on DES, Triple-DES, and AES.  Public-key encryption involves the use of two 

interlocking keys, one that is held privately and the other that is published, from which all 

four properties of protection, including non-repudiation, can be realized.  This scheme 

has the advantage in that public keys can be distributed across open networks.  A broad 

variety of books are available that describe these core ideas, [Mel et al. 2001] is 

particularly accessible. In light of the speed and complexity involved in public key 

encryption, it is unsurprising that the memory encryption literature typically espouses 

symmetric key cryptography.  However, delivery of encrypted code over the network 

may be facilitated using the public key model [Kgil et al. 2005].  
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Unfortunately, computer users have consistently demonstrated an aversion to any 

form of increased response time, even when associated with increased security.  Studies 

suggest that delays of longer than 150 ms are perceptible to users [Muller et al. 2011].  

Full disk encryption has only become viable because overheads have been reduced to 

acceptable levels.  Achieving similar levels of acceptable performance for memory 

encryption offers a far more significant challenge in that there is an existing, growing, 

and well-documented speed-gap between processors and memory.  Improvements in 

processor speed are outpacing improvements in memory speed by an average of 18% per 

year [Hennessy et al. 2006].  Adding encryption latency to this already strained interface 

may require an overhaul of the basic fetch-decode-execute cycle employed by processors. 

Added to the complexities of any memory encryption solution is the fact that, 

unlike the hard disk where data is sequentially stored for access, memory is used in a 

broad variety of dynamic access patterns.  Numerous decisions must be made concerning 

the granularity of encryption in operating systems. For example, a running program will 

utilize RAM during execution for both stacks and heap space.  The stack is accessed so 

frequently that adding encryption/decryption overhead to stack operations might prove 

prohibitive. Unfortunately, during context switches, registers containing sensitive 

information are normally saved to the stack in external memory. Additionally, the heap 

size, for any given program, is not normally known a-priori. The complexities of memory 

mapped input-output peripherals result in an inability to cache mapped regions.  This 

naturally presents a challenge, if the overarching concept involves decrypting memory 

only after it is brought onto to the processor chip. It is not clear if the entire memory 

should be encrypted with a single key, or if shared libraries, individual programs, and/or 
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data should be encrypted independently using separate keys.  Alternatively should 

individual functions or cache blocks be used as the unit of encryption?  All of these 

decisions incur a tradeoff between the number of keys that must be securely stored, 

versus the degree of protection and overlapping in operations that can be realized. 

The literature on memory encryption is largely concerned with three core 

approaches based on hardware enhancements, operating system enhancements, and 

specialized industrial applications. These approaches are explored in the sections that 

follow. Unfortunately, almost all of the hardware and operating system enhancements 

have only been implemented through simulation or emulation, and as a result, the claims 

have yet to be validated and quantified on practical systems. 

2.2 Monolithic Processor Enhancements 

The general scope of hardware enhancements includes a number of approaches 

that have added specialized encryption units and/or key storage mechanisms to existing 

processor designs. In addition, several efforts have proposed inserting hardware into the 

system bus to leverage legacy code and hardware. Although the first patents detailing 

memory encryption were executed in 1979 [Best 1979; Best 1981; Best 1984], and the 

first paper detailing their use was published in 1980 [Best 1980], the body of in-depth 

academic research related to general-purpose memory encryption has occurred primarily 

in the past decade.   

One of the earliest papers, often referenced by others of this genre, highlights an 

execute-only memory (XOM) architecture [Lie et al. 2000]. This architecture was 

designed to combat software piracy and combines aspects of both public and symmetric 

key encryption. Public key encryption is used to deliver binary code to the XOM chip, 
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which maintains a unique private key. This allows vendors to encrypt the code for a 

particular system and ensures that it cannot be reused on another system. The header 

associated with the code includes a symmetric key embedded within it, which is used to 

segment memory into unique compartments at the granularity of a process. In order to 

map compartments to encryption keys, each compartment is tagged. A single null 

compartment is created to hold all unencrypted processes and libraries. This compartment 

enables communication between encrypted processes while allowing all processes to use 

shared libraries.   

The XOM architecture assumes several hardware enhancements to existing 

processors. Special microcode is required to store the unique private key in a private on-

chip memory. A symmetric-key encryption unit is added to the processor, together with a 

special privileged mode of operation for encryption. A hardware trap on instruction cache 

misses provides a segue into this encryption mode for encrypted code. When a cache 

miss occurs, the instruction is decrypted before being loaded into the processors 

instruction register. Although the authors state encryption could be accomplished in 

software they acknowledge that this would be very expensive in terms of overhead.  

Since many of the papers that follow XOM include similar hardware, only the differences 

or unique contributions of the other systems will be discussed.  

XOM encrypts memory in a straightforward manner commonly known by the 

encryption community as electronic codebook mode but referred to in the literature as 

direct encryption.  Each code block is decrypted by the encryption unit after it is read 

from memory, and encrypted before it is written back to memory. Kgil et al. [2005] 

propose an additional chip enhancement targeted at improving the security of direct 
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encryption, called ChipLock.  This involves storing a small trusted part of an operating 

system kernel, called TrustCode, in a read-only memory (ROM), termed TrustROM. 

Additional instructions are added to enable secure communication between the trusted 

and untrusted parts of the operating system.  The TrustCode intercepts all system calls for 

memory access and performs encryption without the knowledge of the untrusted portion 

of the operating system.  Symmetric keys are assigned at the granularity of the process as 

in XOM, with additional keys for shared libraries and the concept of a null bit for 

applications that are not encrypted.  

Rogers et al. [2005] attempt to improve on direct encryption using an alternative 

mechanism, prefetching. Prefetching uses stream buffers to capture spatial locality in 

programs by copying additional contiguous blocks of memory into local cache after each 

miss.  These buffers are especially good at speeding up programs that exhibit spatial 

locality and contiguous access, such as scientific applications [Hennessy et al. 2006].  An 

alternative prefetching technique that involves correlation tables to capture and reuse 

temporal locality, i.e. complex and/or non-contiguous sequences of memory access, is 

also used. 

In another direct encryption scheme, Hong et al. [2011] perform a tradeoff 

analysis on the use of sensitive (encrypted) versus frequently accessed (unencrypted) data 

in embedded scratch pad memories (SPM).  SPM’s are software controlled SRAMs, as 

opposed to caches, which are typically controlled by hardware.  There are numerous 

papers that discuss both static and dynamic policies for SPM utilization to reduce power 

consumption and memory access latency. DynaPoMP was the first to consider 

partitioning the SPM into distinct areas with an area dedicated to sensitive code and data. 
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The authors vary the size of the two partitions in an attempt to find the most efficient 

ratio.  There is a common assumption that an encryption unit and special instructions are 

available in hardware. Unfortunately, direct encryption schemes involve a one-to-one 

mapping between blocks of unencrypted and encrypted code. As a result, encrypted code 

portrays a similar statistical distribution as the unencrypted code, thus allowing a 

significant amount of information to be gleaned from frequency analysis [Chhabra 2010].  

Based on the typical AES encryption block size of 128 bits, programs tend to exhibit 

multiple redundancies that would lead to information leakage as shown in Figure 2.  

After XOM, a number of papers attempt to mitigate this statistical weakness using 

a one-time pad (OTP) [Suh et al. 2003; Shi et al. 2004; Yang et al. 2005; Yan et al. 2006; 

Suh et al. 2007; Duc et al. 2006].  A traditional OTP is simply a source of random data 

that is used exactly once to encrypt a particular communication. This is a form of 

symmetric-key cryptography since both the sender and receiver require the pad.  

Although variously referred to as “pseudo one time pads” (POTP) in the literature, this is 

more commonly known in the encryption community as counter-mode (CTR) encryption. 

In computing, OTP’s are created by encrypting a unique seed, typically producing a pad 

of 128 bits in length (i.e. the size of an AES encryption block) as shown in Figure 3.  A 

fixed initialization vector (Nonce) is concatenated with a counter producing a unique 

seed.  The seed is encrypted with a unique key generating the pad, which is then 

exclusively or’ed (XOR) with the plaintext to produce the cipher text. In memory 

encryption schemes, the counter is stored either internally, in a cached table that maps to 

a memory address, or unencrypted within the encrypted memory itself (i.e. RAM) since 

counter secrecy is not required [Yan et al. 2006]. When a memory reference occurs, the 
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pad is regenerated, using the counter (and optionally some other component such as the 

virtual address) and initialization vector, then exclusively or’ed with the encrypted data to 

produce the original plaintext. Since the encryption operation is no longer dependent 

upon the data in memory, this regeneration can be overlapped with the memory read, 

decreasing the performance impact of decryption.  

 

Figure 2: Redundancies in 128-Bit Sections of Binary Code 

 

 

 

 

 

 

Figure 3: Pseudo One-Time Pad or Counter Mode Encryption 
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Aegis is a OTP approach that was originally proposed as a direct encryption 

scheme in 2003.  Suh et al. propose the one-time pad approach in [2003b], perhaps 

illustrating the shift away from direct encryption in the community.  One interesting 

contribution from this paper is the method of creating the unique key.  The chip-specific 

encryption key is created by physically unclonable functions (PUF) [Suh et al. 2003a].  

These functions make use of unique timing characteristics of “identical” models of the 

hardware to create the unique keys.  Aegis is one of several approaches that include the 

idea of a small, protected security kernel that is separate from the rest of the untrusted 

operating system.  Unfortunately, this kernel measures 74K lines of code for virtual 

memory management alone [Chhabra et al. 2011].  

In Yang et al. [2005], the authors look to reduce the execution overhead of using 

one-time pads by adding a sequence number cache (SNC) onto the chip below the L2 

cache.  Sequence numbers, in this paper, correspond to the counters used in Figure 3.  

However, the initialization vector is unique per cache block and corresponds to the virtual 

address.  Since the addresses are unique across memory, the pads (and thus the 

ciphertext) will be spatially unique.  The counters are updated upon each write to 

memory ensuring temporal uniqueness (i.e. pads used for a single location will not be the 

same over time). The authors suggest that a reasonable addition to a chip would be a SNC 

of 64 KB.  Based on this limitation, two policies for using the SNC are described.  In the 

first policy, only the portion of memory corresponding to the number of available 

sequence numbers stored in the SNC can be encrypted. The amount of protected memory 

is therefore limited by the SNC size. In the second policy, additional memory lines are 

encrypted and sequence numbers that do not fit in the cache are stored in plaintext in 
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memory.  Level two cache is increased in both methods by 4% in order to store the 

virtual memory addresses used to index into the SNC since only physical addresses are 

typically available above the level one cache.   

In [2006], Yan et al. present split counter mode encryption, in which they 

introduce major and minor page counters.  In this scheme, a 4 KB page has one 64 bit 

major counter and 64 7-bit minor counters (one per 64 Byte cache line).  Concatenating 

the page major counter with the cache line minor counter forms the overall counter.  This 

counter is further concatenated with the memory block’s virtual address, and an 

initialization vector to form the unique seed.  The vector can be unique per process, group 

of processes or system based on security requirements.   

In CryptoPage [Duc et al. 2006], the authors again attempt to enhance the OTP 

encryption scheme.  In this case, they modify the translation look-aside buffer (TLB) and 

page table structures, adding information for pad computation. Since the TLB and/or 

page table structures are always accessed before a memory read, the authors claim that 

the pad generation latency can be almost completely removed.  This scheme is 

implemented on top of the HIDE memory obfuscation technique whereby access patterns 

are permuted in memory at designated times [Zhuang et al. 2004].   

In address independent seed encryption (AISE) [Rogers et al. 2007], the authors 

propose to use a logical identifier, rather than the virtual or physical block address, as the 

major counter portion of the seed. This scheme closely resembles split mode counters 

[Yan et al. 2006].  It is claimed that using an address independent seed enables common 

memory management techniques, such as virtual addressing, paging, and inter-process 

sharing.  In [2011], Chhabra et al. propose to build a secure hypervisor upon the AISE 
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substrate.  The hypervisor implements memory cloaking, whereby the operating system 

only has access to the encrypted pages of applications.  The authors suggest that this 

cloaking will protect processes from vulnerabilities in the insecure underlying operating 

system, with an order of magnitude fewer lines of code than in Aegis.   

In [2007], Nagarajan et al. propose compiler-assisted memory encryption for 

embedded processors assuming some limited hardware support. They claim that the 

current counter mode solutions require too much silicon space for small and medium size 

embedded processors.  The compiler supports memory encryption by introducing special 

instructions to calculate OTP’s prior to loads and stores, and assumes the existence of 

additional process-unique registers used to store the counters.  Space for the unique key 

and global counter is also provided inside the CPU and the availability of a crypto unit is 

assumed.  The compiler attempts to ensure that the counter used for a store is still 

available for successive loads from the same memory location. A global counter must be 

available for those loads and stores that do not match one of the process-unique counter 

registers.  The authors claim that since frequently executed loads and stores exhibit 

highly accurate counter matching, 8 special hardware registers with 32 counters are 

sufficient for reasonable performance.  

2.3 Multi-Processor Enhancements 

Chhabra et al. [2010] compare a symmetric multiprocessor (SMP) and a 

distributed shared memory (DSM) design; they also provide a quick look at monolithic 

memory encryption. Whereas the efficiency of memory-to-cache confidentiality is the 

primary concern for monolithic processors, multiprocessor systems must also protect 

cache-to-cache traffic.  In symmetric multiprocessors, the shared bus between caches and 
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memory can be used as a way to coordinate messages between processors. This sharing is 

not available in distributed shared memory systems, which must use message passing.  

Additionally, DSM systems can be observed more easily than monolithic chips via 

interconnect wires that are exposed at the back of server racks [Rogers et al. 2008].   

In [2004], Shi et al. use OTP encryption both for memory-to-cache and cache-to-

cache transfers as shown in Figure 4.  In this approach sequence numbers (counters) are 

incremented in lockstep in each separate processor resulting in a claim of “very low” 

overhead for cache-to-cache encryption.  A hardware mechanism in the processors 

ensures that the sequence numbers begin differently after each reboot.  Besides the 

typical crypto-engines placed within each processor core, a separate crypto-unit is 

embedded in the north bridge memory controller for memory-to-cache transfers.  For 

these transfers, 64-bit sequence numbers are stored in RAM reducing the available 

memory by 25 percent.   

 

Figure 4: SMP Architecture with Memory Encryption Engine 
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In SENSS [2005], Zhang et al. utilize OTP’s for memory-to-cache transfers and 

AES cipher block-chaining mode for cache-to-cache transfers.  This alternative to direct 

encryption divides the clear text into blocks and encrypts the first block with an 

initialization vector; subsequent blocks are chained together such that the output of the 

previous block is XOR’d with the input of the next before being encrypted. Cipher block 

chaining implies sequential access since each block depends upon each previous block.  

RAM is typically accessed in a fairly random pattern, so this mode of operation is 

impractical except on a very small scale (per cache block for example). Cipher block 

chaining is acceptable for cache-to-cache transfers as only one previous encrypted block 

must be stored at each processor (i.e. there is no requirement for access to previously 

encrypted blocks).  The authors propose a secure hardware unit (SHU), located at each 

processor, comprising an encryption unit with associated storage for keeping track of 

communication. This storage includes memory for a group processor matrix and group 

information table. The group processor matrix is used by each SHU to determine if 

broadcast messages should be read. The matrix is only 640 bytes in size, assuming a 

maximum of 32 processors. The information table contains the secret information for 

communicating between groups, such as the symmetric key and pads, and is estimated at 

149 KB.  An additional 11 bus lines are used for control signals and to pass group id 

numbers.  In Jannepally et al. [2009], the SENSS scheme is improved using Galois 

Counter-Mode (GCM) AES, which provides both encryption and authentication 

simultaneously.   

In I2SEMS [2007], Lee et al. create a scheme that is claimed to be applicable to 

both SMP and DSM systems. They propose a global counter cache (GCC) that assigns 
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different sections of the overall counter space to processors (akin to assigning blocks of 

IP addresses to groups of computers).  The blocks of counters are also broadcast to all 

processors so that they can begin pre-computation of pads.  Each processor has a 

keystream (pad) queue, keystream cache and keystream pool.  The queue and cache both 

contain pads for encryption.  The queue has new pads while the cache contains pads that 

have been used previously.  The authors claim that pads may be reused as long as the 

plaintext has not been modified and that their scheme scales well to large numbers of 

processors since over 25% of pads are reused.  The keystream pool holds pads for 

incoming data. The pads are chosen based on prediction with the aid of the broadcast 

scheme.  

The first paper to exclusively address DSM systems [2006] was by Rogers et al., 

who again make use of counter mode encryption.  Since the memory-to-cache scheme is 

similar to those already discussed, we only focus on the cache-to-cache scheme.  The 

authors propose three methods for managing the pad counters:  private, shared, and 

cached counter stream.  In the first private method, tables are kept within each processor 

with separate counters for send and receive operations to/from every other processor in 

the system.  While this technique allows for nearly perfect pad hit rates, and therefore 

very low overhead, it suffers from large storage needs (180KB in each processor for a 

1024-processor DSM).  The second shared scheme, aims to reduce the storage 

requirement by eliminating half of the table: Instead of keeping track of send counters for 

each processor, only one counter is kept for sending pads.  This results in increased 

execution overhead since messages are less likely to arrive contiguously and therefore 

must be recomputed.  The final cached scheme takes advantage of the intuition that 
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processors in DSM systems often communicate in cliques [Lee et al. 2007].  The overall 

table size is thus reduced to a quarter of the private scheme’s memory with minimal 

impact on execution overhead.  In a subsequent paper [2008], Rogers et al. identify the 

previous scheme as a two level approach since remote memory requests will first be 

decrypted by the owning processor and then re-encrypted for cache-to-cache transmission 

to another processor.  In the new scheme, a single mechanism is used for both memory-

to-cache and cache-to-cache transfers bypassing the unnecessary decryption and re-

encryption.  The associated hardware includes a 32-entry buffer (1 KB) for counter 

prediction and a 32-entry mask buffer that stores a bit vector of recent data block 

accesses (512 bytes).   

2.4 Bus Inserts 

Another area of active research involves placing specialized encryption hardware 

outside of the CPU.  The locations include the memory bus (i.e. externally between 

system memory and the CPU) and within RAM. The primary goal of this approach is to 

increase the likelihood that this solution will be adopted since re-engineering of 

commodity processors is not required. One such approach, SecBus [Su et al. 2009] shown 

in Figure 5, can be located at the frontend of the memory controller. The authors state 

that this method of modification is required in many user markets when embedding new 

functionality into systems with legacy CPUs. SecBus is essentially a cryptographic 

coprocessor with internal storage and bus manager.  The page security parameters entry 

(PSPE) includes information to map pages to corresponding security policy (SP), which 

includes a confidentiality mode, integrity mode and secret key.  SecBus includes the 
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ability to choose between multiple encryption modes based on the type of memory (i.e. 

code or data).   

 

Figure 5: SecBus Hardware Augmentation Model 

 

In [2008], Enck et al. design a memory encryption control unit (MECU) to again 

be placed on the memory bus between the processor and RAM.  The goal of MECU is to 

provide the same guarantees of security provided by the volatility of traditional RAM 

when utilizing non-volatile main memory.  MECU uses a OTP scheme with internal 

storage for the array of counter seeds and the encryption engine. A secret key and master 

counter, which tracks the greatest overall counter, are stored on a removable smart card.  

In order to reduce the storage requirement, the encryption chunk granularity is increased 

from one cache line to n, where n is 256 in the common case but can grow to the entire 

memory for experimentation.   

With the same goal as [Enck et al. 2008], Chhabra et al. [2011] propose placing 

the cryptographic engine and other required hardware in non-volatile RAM modules.  

Their scheme keeps most of the RAM encrypted with a smaller group of frequently 

accessed pages in plaintext in a similar fashion to [Hong et al. 2011].  The authors claim 
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that by doing this, the remainder of the RAM can be encrypted at power-down within 5 

seconds, paralleling traditional RAM volatility. 

2.5 Operating System Enhancements 

Similar to the bus insert method for enabling memory encryption, software-only 

approaches seek to provide solutions that can be implemented without major changes to 

applications or commodity hardware to increase the likelihood of adoption.   

In [2008], Chen et al. propose an operating system controlled memory bus 

encryption technique for systems that offer scratch pad memory (SPM) or cache locking 

that is software controllable.  Both types of memory are available in some embedded 

processors including the Intel XScale series.  A new symmetric key is generated each 

time the system is booted and random vectors (32 bits generated using /dev/urandom and 

padded with 0’s) are used to initialize AES encryption at the granularity of a page.  The 

vectors are then placed in memory with the pages. This scheme requires a 0.4% space 

overhead when used with 1 KB pages.  When a page fault occurs for a secure process, a 

specially crafted handler moves the encrypted page into the chip boundary and decrypts it 

there placing it into the cache, which is then locked to prevent leakage of sensitive data.  

The locked region holds several pages of data and encryption variables.  In order to 

facilitate this special handling, a Boolean status variable is added to each process 

descriptor residing in kernel address space.  The authors note the scheme is appropriate 

when embedded systems designers can tolerate a significant performance overhead for 

protected processes.   

In Cryptkeeper [2010], Peterson modifies the virtual memory manager and 

partitions RAM into two parts; the plaintext Clear and the encrypted Crypt.  Essentially, 
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this technique aims to reduce the amount of sensitive data available at any time in 

memory.  All pages initially start in the clear and the number of Free Clear Pages (FCP) 

is reduced with each allocation.  The least recently used pages are encrypted and moved 

to the Crypt when the limit of FCP runs low. This operates under the assumption that the 

number of high use pages will be small, and therefore most infrequently used pages will 

be encrypted. This has the unfortunate side effect of maintaining all the important pages 

in the clear. A prototype Cryptkeeper system was designed based on the Linux 2.6.24 

kernel.  The kernel page structure was extended to include information indicating 

whether a page is in the Clear or Crypt portions of memory.   

 

2.6 Specialized Industrial Devices 

Industry offers several solutions for memory encryption including low frequency 

specialized processors for ATM use, expensive tamper resistant coprocessors for 

financial transactions, proprietary gaming systems and, more recently, adding 

technologies in commodity processors that enhance trust. 

The Dallas Semiconductor 5002FP secure processor is an 8051 compliant 

processor and runs at a maximum frequency of 16 MHz [Dallas 1997].  The processor 

encrypts memory addresses to prevent traffic analysis on the memory bus in addition to 

data.  The device uses spare processor cycles to place dummy memory accesses on the 

bus since analysis of memory access patterns can reveal useful information (e.g. 

encryption keys or sensitive algorithms) to attackers [Gao et al. 2006].  All external 

memory is encrypted via a proprietary encryption algorithm with a 64-bit secret key that 

is stored in a tamper-protected, battery-maintained static RAM.  Plaintext code is 
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uploaded via serial port and a firmware monitor encrypts it and stores it in external RAM.  

The 5002FP is commonly used in credit card (i.e. point of sale) terminals, automated 

teller machines, and pay-TV decoders [Yang et al. 2005].  A newer version (DS5250) 

includes a larger 1 KB instruction cache, which, according to Dallas Semiconductor, 

reduces the effect of memory encryption on execution speed providing a 2.5X 

performance improvement.  The newer processor runs at a maximum frequency of 25 

MHz. 

Another active area of secure hardware used in industry is the cryptographic 

coprocessor such as the IBM PCI-4758.  These coprocessors include an impressive array 

of technology including a secure processing environment, microprocessor, custom 

encryption and random number generation hardware, and shields and sensors (to help 

protect against destructive attacks) [Howgrave-Graham et al. 2001]. However, they are 

generally limited to IBM server platforms under customized contracts and tend to be used 

for financial and banking systems.  A modified version of CP/Q message-passing kernel 

runs on the system providing a subset of typical features.  The secure module is encased 

in a flexible mesh of overlapping conductive lines meant to prevent any physical 

intrusion.  If such intrusion is detected the system responds by zeroizing the internal 

RAM which holds the secret key.  The stated purpose of the IBM secure coprocessor is to 

offload computationally intensive cryptographic processes (e.g. specialized financial 

transactions) from the host server. 

While mostly constrained for use in playing games and other entertainment media 

(unless compromised) gaming systems are some of the most capable (e.g. fast processor 

speed and relatively large storage) to incorporate memory encryption techniques.  As an 
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example of these systems, the Xbox 360 provides encrypted/signed bootup and 

executables, partially encrypted RAM, and an encrypted hypervisor [Steil and Domke 

2008].  These mechanisms are provided via a Microsoft proprietary processor with 64 KB 

of internal RAM, random number generation and encryption as opposed to the “off the 

shelf” processor used in the original Xbox.  While it is possible to use the Xbox as a 

general-purpose platform, this requires compromising the system’s security measures 

first.  Alternatively, the Sony Playstation 3 includes many of the same security 

mechanisms of the Xbox 360, but allows the end user to partition the hard drive for use 

with a chosen (e.g. Linux) operating system.  However, the proprietary security 

mechanisms of the Playstation 3 are not available to the additional operating system 

[Conrad et al. 2010]. 

The trusted computing group (TCG) designed the Trusted Platform Module 

(TPM) based on the IBM 4758 secure coprocessor [Vandana 2008]. The TPM provides 

secure key storage and the capability for platform measurements for chain-of-trust 

booting. The current specification for the TPM calls for it to be attached to a typical 

motherboard via the low pin count (LPC) bus.  The TPM provides non-volatile storage 

for encryption keys and an encryption engine including support for RSA, SHA-1 hashing, 

and random number generation.  The LPC bus is limited in speed and the cryptographic 

engine on the TPM is not meant to be a cryptographic accelerator.  Over 350 million 

TPMs were deployed as of 2010 and can be found in many laptops and general-purpose 

computers (disabled by default) [Dunn et al. 2011].  On its own, the TPM would not be 

powerful enough to provide general memory encryption with acceptable overhead.  

However, the TPM may be used to provide secure key storage between power cycles.  
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Unfortunately, a small weakness still exists in that keys must be sent in the clear over the 

LPC bus to the CPU, allowing a bus snooping attack to capture them [Simmons 2011].  

Other interesting methods to store encryption keys have been described recently in 

schemes targeted at preventing cold-boot attacks on full disk encryption.  For example, 

Muller et al. describe TRESOR, a technique for utilizing CPU debug registers for 

encryption key storage [2011].  In order to protect against memory attacks on the key, the 

decryption routines are carefully written in assembly to avoid using the stack, heap or 

data segment during decryption.  By utilizing AES-NI, TRESOR was shown to perform 

better than software based full disk encryption (17.04 MB/s vs. 14.67 MB/s) with the 

additional protection.  A similar approach is taken in [Simmons 2011] except that 

registers used for performance counting are targeted for master key storage with multiple 

encrypted keys being stored in RAM.   

Intel has recently filed several patents for processors incorporating memory 

encryption, perhaps indicating a move toward support in commodity processors [Gueron 

2012], [Gueron 2013]. The patents describe a new processor with hardware including a 

memory encryption engine (MEE) and on-chip storage for counters.  The hardware 

described in the application modifies the AES-XTS tweak mode of operation. XTS stands 

for XEX based tweaked codebook mode with ciphertext stealing and this mode is 

typically used for disk encryption [Martin 2010].  A tweak is similar to an initialization 

vector and is an additional input to a cipher designed to protect against similarities in 

ciphertext.  For disk encryption, the tweak tends to be the sector number.  In Intel’s 

patents, the tweak is extended to include a time stamp or counter value along with the 

memory address. The counter is updated each time a cache line is written, providing 
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protection against a replay attack where a chunk of memory is copied and inserted back 

into memory at a later time. 

2.7 Commoditized Security Hardware 

Most of the approaches in the ME literature assume that several components are 

necessary for secure, efficient performance: a way to generate and securely store 

encryption keys (i.e. not in RAM); and hardware to accelerate encryption performance.  

Although not targeted specifically at memory encryption, nascent technology could be 

used to form the basis of an encrypted memory solution for general-purpose systems. One 

of the developers of IBM’s 4758 cryptographic coprocessor has suggested, for example, 

that a general-purpose system with hardware support (such as a trusted platform module) 

could theoretically be turned into a somewhat less secure but more pervasive and less 

expensive version of the 4758 [Smith 2004].  Encryption engines have been added to 

Intel’s core i5 and i7, AMD’s bulldozer and various embedded processors [Muller et al. 

2011].  For X86 systems, Intel’s advanced encryption standard - new instructions (AES-

NI) include six instructions to speed up key expansion and encryption.  Intel states that 

the new instructions can provide a two to three time performance improvement over 

software-only approaches for non-parallel modes of operation such as cipher-block-

chaining (CBC) encryption [Gueron 2010].  Further, a 10-fold improvement can be 

realized for parallelizable modes including CBC-decrypt and counter-mode encryption 

(CTR).  As an example of the performance improvement possibilities, the authors ran 

TrueCrypt’s encryption algorithm benchmark test on a MacBook Pro with an Intel i7 

dual-core, 2.66 GHz CPU.  Using a 5 MB buffer in RAM, the throughput averages 202 
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MB/s without AES-NI support, and 1 GB/s with it, thus approaching the speed required 

to overcome encryption overheads on general-purpose systems.  

Henson and Taylor [2013] are among the first to take advantage of this 

commoditization of security hardware for use in implementing memory encryption.  The 

IMX53 development board is used in conjunction with an ARM cortex A8 processor that 

contains security hardware within its boundary.  The hardware consists of encryption and 

hashing engines and random number generation as well as facilities for trusted booting.  

A small (~35KB) microkernel called Bear is developed and integrated with the A8 and 

security hardware.  As the work is implemented on commodity hardware, it considers 

many of the details that are not thoroughly addressed in the other surveyed literature (i.e. 

simulation work).  For example, encryption is explored at process component granularity 

(e.g. stack, heap, code) with analysis of the overhead for encrypting each component.  

The work takes advantage of on-chip, internal RAM (iRAM) as well as cache to provide 

the secure processing environment.  Outside of this chip boundary, all code and data are 

encrypted.  Most of the ME functionality is tied to the context switching routines in the 

microkernel. The microkernel fits into the iRAM and is part of the TCB in this work.     

2.8 Analysis 

Although the primary goal of memory encryption architectures is security, the 

work tends to focus on the overheads involved, both in chip area and performance 

degradation.  This is unfortunate though unsurprising given that most of the work is 

simulated and it is within the intricacies of implementation that security vulnerabilities 

tend to be found.  The analysis here focuses on the data available including encryption 

latencies, performance degradation, simulation environments, operating system 
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assumptions, overall space requirements, user requirements and general observations 

regarding security. 

Since the performance degradation of memory encryption results in less 

likelihood of its use, it is an extremely important factor in the comparison of different 

schemes.  One of the major issues with the body of literature is the lack of a common set 

of measurement standards, with explicit assumptions regarding memory access latency, 

encryption latency etc. This makes it difficult to directly compare approaches and draw 

valid conclusions.  Encryption latencies are typically given as the number of cycles 

required to encrypt/decrypt a cache line that varies from 16 to 128 bytes, typically using a 

value of 64 bytes. The latencies range from 11 to 160 cycles with 80 being the most 

common value (especially in the multiprocessor work). The authors in [Rogers et al. 

2006] state that 80-cycle latency is assumed in order not to penalize the direct encryption 

scheme (upon which they are trying to improve) since a recent (circa 2006) hardware 

implementation required over 300 ns.  Cycles and nanoseconds are often used 

interchangeably since many of the systems modeled are based on 1 GHz processors.  

Low encryption latencies are possible but at the cost of large die area making them 

appropriate for powerful processors.  For example, it is claimed in [Suh et al. 2003] that 

40 cycle-latency is achievable with four AES units chained together requiring 300,000 

gates.  In AEGIS [Suh et al. 2007], a single AES unit is estimated at 86,655 gates, which 

the authors claim is modest when compared to the size of commercial cores.  

Unfortunately, the OR1200 soft core used to demonstrate Aegis is only approximately 

60,000 gates (meaning one AES unit is 144% of the original core size). 
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The methods used for determining performance include mathematical models, 

simulation, kernel prototypes and FPGA prototypes with various benchmarking suites 

used in the latter three.  Simulation is performed with (in order of decreasing usage) 

SimpleScalar, Simics, SESC, GEMS, SOC designer, RSIM, and M5.  Benchmark suites 

used include SPEC2000, SPLASH2, Mediabench, EEMBC and several user developed 

varieties such as one entitled “memeater”.  A group of the simulations utilize 

SimpleScalar and [Duc and Keyell 2006] notes that this simulator neglects the impact of 

the operating system and other running processes.  Besides these limitations, some 

authors admit a lack of model fidelity with significant differences between systems 

modeled and those targeted.  For example, in [Chen et al. 2008] an x86 architecture is 

modeled since it happens to be better supported by the simulation tool (Simics) even 

though the scheme is actually targeted for embedded-ARM systems. Unfortunately, even 

if a system under test were to be modeled perfectly, the simulation tools themselves have 

been shown to sometimes exhibit behavior unlike real systems.  In [Muller et al. 2011], 

the behavior of CPU registers is interrogated under simulation in QEMU with the 

contents surviving soft-boot.  Such behavior would circumvent the protections afforded 

in that work, however, real hardware behaves differently and zeroes out the registers. 

A summary of the featured techniques is presented in Table I to provide an 

overview of memory encryption.  The table includes basic characteristics of each 

approach such as complexity information including execution and storage overheads.  In 

order to fairly compare the different schemes, several assumptions were made.  For 

example, the size of internal storage required is sometimes dependent on the size of 

RAM, and where possible an assumption of 1 GB is made.  Similarly, an assumption of 
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32 processors is made where possible for the multiprocessor approaches.  When there is 

no data available, an element of the table is left blank.  Two values are commonly 

reported in the literature with regard to execution overhead: worst case (max) and the 

average (based on some suite of benchmark tests) percentage slowdown when compared 

to non-protected execution.  Storage overheads typically break down into internal (cache) 

and external (RAM) usage (and one example of the increase to overall code size).  

Operating system approach indicates whether the authors assumed the existence of a 

secure kernel (A), described hardware to protect the processes from an insecure kernel 

(H), or ignored the operating system (I) (further discussion of this requirement below).  

Finally, slightly fewer than two-thirds of the authors included memory integrity (I) along 

with memory confidentiality (C) mechanisms.  Where possible, results (e.g. execution 

overhead and storage) are provided for memory encryption only.  Maturity indicates how 

the technique was evaluated if not a commercial product.  Methods appear in the table as 

they are presented in the survey and detailed in the approach column: monolithic 

processor, multiprocessor, bus insert, or software/direct or counter mode encryption.   

Security level refers to the overall security of the ME approach with the following factors 

from the table taken into consideration: category, operating system approach, encryption 

algorithm, and partial vs. full ME. Specifically, the five sections are scored with 

maximum points as follows: category (1), operating system approach (2), encryption 

algorithm (2), and encryption level (1).  A score of 6 represents a system capable of 

addressing a wider range of memory threats than those with lower scores.  For category, 

no points are given for bus inserts and software approaches due to inherent weaknesses of 

these techniques when compared to hardware approaches.  The operating system 
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approach is scored as follows: hardware (2), assumption of secure OS (1), no discussion 

(0).  The encryption algorithm used receives 2 points for AES and 1 point for DES or 

unknown algorithms.  We will consider partial/full memory encryption and security level 

in more detail.  While partial memory encryption schemes are typically used to decrease 

both space and execution overheads, they place the onus for identifying secure 

components, a non-trivial task, on application or system designers. Today, an analog can 

be observed in the adoption of hard disk encryption technologies, whereby administrators 

struggling to identify which files (or parts of files) require encryption are opting instead 

for full disk encryption [Brink 2009].  Since it is difficult for end users to properly 

determine which processes should be encrypted, partial memory encryption receives 0 

points with FME receiving 1.   

A comparative analysis on the relative security of these techniques is nontrivial 

and it is important to note that the analysis in this work favors approaches that aim to 

mitigate a wide range of threats over those with a narrower scope.  For example, full 

memory encryption will receive a higher score than an approach that adds volatility to 

magnetic RAM making it behave more like traditional RAM.  Additional factors to 

consider when analyzing these works include consideration of implementation details 

outside of the “steady state” such as key escrow, delivery of secure code, inter-process 

communication, etc. although these are not used for the purposes of scoring. 
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Each approach is qualitatively evaluated on the five components listed above 

receiving a total score ranging from 1-6.  As an example, the Aegis approach [Suh et al. 

2003] is among the highest security level of the works surveyed (6): the category is 

monolithic processor with encryption support built in (+1); the operating system 

approach includes both hardware and a small, trusted kernel (+2); the AES encryption 

algorithm is used (+2); and full memory encryption is provided (+1).  While not part of 

the score, much of the additional details required for a fully functional, secure 

implementation are discussed in Aegis.  It is not surprising that the approach with the 

highest security evaluation is also among the most mature (implemented as an FPGA 

prototype) since implementation allows for exploration of security tradeoffs.  In contrast, 

operating system controlled ME [Chen et al. 2008] is classified among the lowest security 

levels (3): this approach is software based (+0); assumes the kernel is secure (+1); utilizes 

AES encryption (+2); and targets partial memory-encryption (+0).  Additionally, this 

work lacks sufficient detail for a fully functional system and assumes the attacker is a 

clever outsider.   

For direct encryption, the performance overhead ranges from a claimed low of 1% 

in [Rogers et al. 2005] based on simulation of pre-decryption to a high of 50% for XOM 

[Lie et al. 2000] using mathematical analysis based on a worst-case scenario. Rogers et 

al. find an average slowdown for a model of XOM of 21% based on the same 18 

SPEC2000 benchmarks used in their own simulation work. In four particular benchmarks 

(applu, bt, ft, and mcf) the overall execution time for pre-decryption is similar to the 

direct encryption scheme because prefetching adds mis-predicted memory references to 

bus traffic increasing contention.  Overhead for OTP based encryption, in monolithic 
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chips, ranges from a claimed 1.6% for AISE (SESC and 21 CPU2000 benchmarks) 

[Rogers et al. 2007] to up to 50% for the basic model in CryptoPage (SimpleScalar and 

10 CPU2000 benchmarks) [Duc and Keryell 2006].  The authors of CryptoPage claim 

only 1% of this overhead is attributable to the memory encryption.   

For multiprocessor systems, the reported overheads range from a low of 4% in 

I2SEMS (Simics + GEMS and 4 SPLASH2 benchmarks) [Lee et al. 2007] to a high of 

55% in [Shi et al. 2004] (RSIM and 6 SPLASH2 benchmarks).  I2SEMS is claimed to 

work equally well on both SMP and DSM systems but the simulation environment is 

limited to SMP.  Cache-to-cache overheads are very low (especially for SMP systems 

that use the shared bus for synchronization) in these multiprocessor schemes.  All of the 

multiprocessor schemes build upon work in the monolithic memory encryption area and 

use the counter mode (OTP) model.   

There are only two models surveyed for hardware insert and they exhibit very 

different performance characteristics.  MECU [Enck et al. 2008] is based on the OTP 

scheme and exhibits 2.1% and 4.1% overhead based on block sizes of 256 and 4096 

cache lines respectively and SimpleScalar simulation with 5 SPEC2000 benchmarks.  

SecBus [Su et al. 2009] is based on direct encryption and exhibits worst case slowdowns 

of  472% based on various EEMBC benchmarks and SoC designer.  Besides the method 

of encryption, the architectures modeled add to the significant differences in overhead.  

While SecBus is simulated on an embedded system with 16KB L1 cache and no L2 

cache, MECU is modeled after an x86 system with 32KB L1 and 256KB unified L2.  

Clearly, the amount of cache available has a huge impact on performance.  If complete 
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working sets fit into a system’s cache, the penalty for memory encryption includes only 

the initial decryption time, which is amortized across the entire duration of the process.   

As might be expected, the software-only approaches suffer from impractical 

overheads.  In [2008], Chen et al. simulate operating system controlled memory 

encryption and report from 137% to 850% overhead based on Simics and Mediabench 

benchmarks.  In Cryptkeeper [Peterson 2010], the overhead to read a page when 

compared to an unprotected system is 6015%.  In regard to commercial hardware, there is 

no literature available that reports the performance degradation of either the Dallas 

Semiconductor chips or the IBM cryptographic coprocessors (e.g. PCIXCC).  However, 

these solutions run at slow overall frequencies (25 MHz and 266 MHz respectively) and 

are not particularly well suited for general-purpose systems.  The IBM PCIXCC 

coprocessor has a reported AES-128 throughput of 185 MB/s.   

In general, the counter mode methods exhibit less computational overhead than 

the direct encryption techniques and are resistant to direct encryption’s statistical 

weaknesses. However, the choice of size for the counter is critical since a “wraparound”, 

whereby the counter resets to zero, requires a change of key in order that each pad is only 

used once (a condition necessary to ensure protection from chosen plaintext attacks) 

[Lipman et al. 2000].  In the case where only one key is used the entire memory then 

requires re-encryption.  This re-encryption can be costly depending on the size of 

memory and results in a temporary freezing of the system, which is unacceptable for real-

time performance [Yan et al. 2006].  Choosing a value too small will result in too many 

re-encryptions but choosing one too large will require unacceptable amounts of storage 

space either in cache or memory.  For example, in [Suh et al. 2003] the authors suggest 
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32 bits is an appropriate size for the counter.  However, even at this size, and based on 

their simulations, a re-encryption is required every 5.35 hours on average and every 35 

minutes for a particularly memory intensive program.  In [Yang et al. 2005], the authors 

choose to disregard the problem since the provided security is assumed to be no weaker 

than that of the XOM scheme, whereas the wraparound issue is not considered at all in 

[Suh et al. 2007].  In [2006], Yan et al. attempt to address the counter size versus re-

encryption problem with their split-counter encryption scheme.  With larger page 

counters and multiple smaller per-memory block counters, overruns result in a much finer 

granularity of re-encryption (per page instead of per process).  Since some pages are 

written back to memory more often than others, the overall necessity for re-encryption is 

reduced since the fastest incrementing counter would have controlled the entire memory 

space in previous schemes.  Another critical decision is where to store the counters.   

Although using cache is obviously faster, it is also problematic as cache resources 

are typically limited and expensive.  If pre-existing cache space is utilized instead, 

additional memory references occur since part of processes’ working sets are forced out 

of cache (essentially reducing the size of the usable cache causing capacity misses).  For 

example, in [Yang et al. 2005] the authors state that a 1 GB memory space would require 

over 8 million sequence numbers based on cache line granularity and a cache line size of 

128 bytes.  Adding a cache that large (~ 28 MB) is unreasonable so the authors suggest 

adding a much smaller 64 KB one.  However, this design decision either limits the 

security of the system, since a large part of memory would be unencrypted, or some 

sequence numbers would be stored in memory.  There are 32K numbers (2 Bytes each) 

stored in the SNC covering 32K L2 cache lines and 4 MB of memory.  Although RAM is 
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slower than cache, the seed (which is smaller than a cache line) is the first memory access 

and would arrive earlier than the rest of the reference.  Although this does not hide as 

much latency as using cache, it is an improvement over the direct encryption scheme.  

This technique would also render part of RAM unusable, as it would be utilized for 

additional storage. 

In address independent seed encryption (AISE) [Rogers et al. 2007], the authors 

suggest that all of the previous OTP schemes are flawed in their use of memory address 

as part of pad computation.  Using virtual addresses as a component of the input to the 

pad seeds may lead to a vulnerability since separate processes will use the same address 

tweak as part of the seed thus breaking the requirement for pad uniqueness. Additionally, 

using the virtual address for pad computation can cause problems for shared memory 

inter-process communication since the pads would be different for the various processes 

even though both need to access the plaintext.  For schemes using the physical address as 

part of the pad computation there are other issues when swapping to the backing store.  

Since pages in memory that are swapped out are likely to reside at a new physical address 

when brought back in, there is a potential for pad reuse or the requirement for a 

decryption and re-encryption of a page loaded into a different address.  

Industrial implementations have been shown to be vulnerable to attack.  In [1998], 

Kuhn demonstrates what is essentially a brute-force attack on the 5002FP.  External 

hardware is used to control input to the processor and force it to power cycle.  After each 

power-on, different encrypted “guesses” (possible instructions) are fed to the system and 

the output ports are observed.  The 5002FP had been described as the most secure 

processor available for commercial users at the time of this successful attack, which used 
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a personal computer, and a device built in a student laboratory for about $300.  One of 

the reasons the 5002FP is vulnerable to brute force attack is the small size of the 

plaintext.  Kuhn notes that encryption performed over whole cache lines (of at least 8 

bytes) instead of on single bytes would make the brute-force attack impractical.  There is 

no known example of a successful attack against the IBM cryptographic coprocessors.  

However, these coprocessors tend to be used for highly specialized applications and are 

difficult to upgrade [Suh et al. 2007], thus making them undesirable for general-purpose 

computing environments.  In fact, one of the designers of the IBM-4758 has noted his 

frustration with their expense and modest processing environment [Smith 2003], 

[Gutmann 2000].  While the TPM chip has been included in various trusted computing 

schemes, it is potentially vulnerable to the same types of snooping and bus injection 

attacks used against systems with unencrypted memory [Shi et al. 2004; Suh et al. 2007; 

Simmons 2011].  When utilizing the TPM with bitlocker drive encryption, the secret key 

is copied into RAM making it vulnerable to capture via cold-boot and other attacks as 

demonstrated in [Halderman et al. 2008].  Since the key must be in RAM for bitlocker to 

function properly, the additional protection of the TPM is potentially nullified. 

There are three basic approaches in the literature surveyed with regard to 

operating systems.  There is a problem in that without a secure (trusted) operating system 

extra protections must be placed in hardware to prevent a compromised system from 

breaking the confidentiality of other processes.  When processes are context switched by 

the operating system the registers and other internal memory will be in plaintext.  The 

first approach is to explicitly assume the existence of a secure operating system [Chen et 

al. 2008; Shi et al. 2004; Yan et al. 2006; Suh et al. 2003; Su et al. 2009; Chen and 
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Morris 2003].  Some of the papers taking this first approach discuss implementation 

requirements but none have been developed.  In the second approach, the complexity of 

the hardware is increased in order to protect all processes (including the operating 

system) from each other [Kgil et al. 2005; Yang et al. 2005; Duc and Keryell 2006; Enck 

et al. 2008; Lie et al. 2000; Platte et al. 2006; Zhang et al. 2005; Chhabra et al. 2011].  

One example of such hardware includes special instructions and extra registers which are 

called before context switches [Lie et al. 2000].  The internal registers are then encrypted 

strictly by the hardware before the kernel can intervene and complete the context switch 

as normal.  Although several papers note the importance of working on a secure kernel to 

complement secure architectures we have found no work to date suggesting the 

completion of any such effort.  In the third approach, the requirement for a secure 

operating system is simply not addressed  [Nagarajan 2007; Rogers et al. 2005; Rogers et 

al. 2007; Hong et al. 2011; Lee et al. 2007; Jannepally et al. 2009; Rogers et al. 2006; 

Rogers et al. 2008]. 

2.9 Conclusion 

This chapter has considered the research challenges associated with full memory 

encryption and distinguished three primary groups of techniques that attempt to solve 

those challenges — hardware enhancements, operating system enhancements, and 

specialized industrial devices. While the concept of memory encryption has existed for 

over three decades, there are still no general-purpose, commercial-off-the-shelf (COTS) 

solutions integrated with secure operating systems. However, there is clearly a growing 

need for privacy and intellectual property protection on the Internet as evidenced by the 

increasing use of full disk encryption, recent policy directives such as the Federal Data 
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Breach Notification Act and components of the Health Insurance Portability and 

Accountability Act [Brink 2009].  Between 2002 and 2007, a reported 773 breaches of 

US organizations were reported with a total of 267 million private records lost.  Over 

42% of these breaches were a result of lost or stolen hardware including laptops, PDAs 

and portable memory devices [Romanosky et al. 2008].  Additionally, it is apparent that 

at least one major chip maker (Intel) has recognized this growing need as two recent 

patent applications for adding memory encrypting hardware to processors attests [Gueron 

et al. 2012], [Gueron et al. 2013].  

The range of overheads reported in the literature is quite large (1% to 6015%).  

The results on the lower end of the spectrum are possibly overly optimistic given the lack 

of fidelity in the simulation frameworks and the lack of standards for comparison.  If 

standardization could be injected into the validation methodologies through accepted 

AES decryption latencies, benchmarks etc. it would enable more meaningful comparative 

analyses.  Even with standardiz ation, the number of assumptions make it difficult to be 

confident that simulation will provide anything more than high-level information: It 

ignores the more difficult and interesting implementation issues and associated security 

impact based on vulnerability and exploit analysis.  Where, in the few cases available, the 

literature addresses these low-level issues, it tends to be with generalization since there is 

no chance for practical experimentation or empirical evidence [Lie et al. 2000; Shi et al. 

2004; Chhabra et al. 2010]. While the security of the encryption algorithm or cipher 

mode is often pointed out, it is commonly the complexity of the system in which these 

algorithms run that presents vulnerabilities.  The most developed, though not 

commercially available, general-purpose technologies are FPGA soft-core emulations 
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[Suh et al. 2007] and the Linux prototype used in Cryptkeeper [Peterson 2010].  While 

the industrial devices are mature and practical, they are not general purpose, and typically 

cater to highly specialized operations.  Additionally, these devices are either low-

frequency or expensive and difficult to upgrade [Dallas 1997; Arnold and Doorn 2004].   

Several technologies have been incorporated into general-purpose systems 

recently and often without the knowledge of those buying them.  These technologies 

include TPM chips for storing keys and encryption engines and instructions.  Given a 

system with these components, it is now possible to experiment with memory encryption 

providing an opportunity to better understand the difficult implementation details and 

ultimately provide data on overhead and security enhancement.  This data should prove 

invaluable for determining the feasibility of memory encryption in general-purpose 

systems and for comparing against (and perhaps validating) the results of previous 

simulation work.    
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Chapter 3: Core Ideas and Background 

Chapter two presented a general background and motivation for memory 

encryption including vulnerabilities.  Additionally, a thorough survey and comparative 

analysis of memory encryption techniques was presented beginning with section 2.2.  

Chapter three presents additional specifics regarding the targeted threat model and core 

ideas behind the thesis.  Additionally, closely related works are explored. 

3.1 Threat Model  

In contrast to research on intrusion detection, our research group at Dartmouth is 

focused on exploring methods to increase attacker workload while reducing the attack 

surface. The general threat model used in this research is outlined in Figure 6. It may 

involve several steps including surveillance to determine if a vulnerability exists, use of 

an appropriate exploit or other access method [Kennedy et al. 2011], privilege escalation 

[Davi et al. 2011], removing exploit artifacts, and hiding behavior [Hoglund and Butler 

2005]. Surveillance may involve obtaining a copy of the binary code and using reverse 

engineering [Eagle 2011;Eilam 2005] or fuzzing [Forrester and Miller 2000] to facilitate 

a broad range of attack vectors including return oriented programming [Checkoway et al. 

2009]. The implant then persists for a time sufficient enough to carry out some malicious 

effect, obtain useful information, or propagate intrusion to other systems. Unlike the time 

to execute an exploit, the time spent in surveillance and persistence may range from 

minutes to months or even years depending upon the intended effect. Moreover, the 

presence of an intrusion may never be detected by network defenses but instead may be 

recognized indirectly due to either a deviation from expected behavior, or may be derived 

from intelligence sources. 
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Figure 6: Threat Model for Intrusions with Remote Control 

The threat model explicitly includes an adversary gaining remote or physical 

access (initial touch) with sufficient resources and motivation to pursue vulnerabilities 

via reverse engineering.  There are many situations where this possibility exists: A binary 

code might be obtained via an insider, by purchase, or via an existing point of presence; 

The smart phone of a diplomat might be confiscated for a period of time while transiting 

through airport security; Methods of physical access may be used to capture memory 

and/or disk contents for offline analysis, data exfiltration, and/or malicious code 

development and injection; A smart phone or device may be captured on the battlefield 

and shack attacks used to capture sensitive details of friendly forces locations and 

mission objectives [United 2012]; A download (accidental or intentional) of a malicious 

application to a computer system may result in a new point of presence (e.g. memory 

scraper virus).  All of these attack vectors may be used to nullify common protections 
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including encryption of data at rest and data in transit.  Additionally, the protections 

afforded by recent diversity-based security techniques such as address space layout 

randomization (ASLR) can be overcome since the randomized layout in memory can be 

ascertained.   

The goals of the protections afforded by the research described here are to ensure 

that either 1) time-sensitive details are obtained only after expiration of their value for 

military operations or 2) the difficulty of overcoming the additional security mechanisms 

outweighs the value of sensitive personal or financial information associated with the 

target (i.e. there are other more easily compromised targets).  By protecting against hack 

and shack attacks (described in chapter 2), military mission objectives are safeguarded 

and the likelihood of compromise and loss of financial data is minimized.  As previously 

mentioned, sophisticated lab attacks are still possible, but the time and resources involved 

in such efforts suggest that important mission details, critical for only 24-72 hours (i.e., 

the time window of typical air mission planning and execution) will have expired.  

Additionally, the return on investment for stealing financial information from one system 

is not likely viable.  

Memory vulnerabilities (as explored in chapter 2) are common in systems ranging 

from servers and standard desktops to mobile computing devices (e.g. smart phones, 

tablets, laptops, etc.).  However, usage patterns toward the mobile end of the spectrum 

may exacerbate the problem since many users of smart phones rarely reboot these 

systems thus maintaining them in an “always on” fashion resulting in the persistence of 

sensitive information [Karlson et al. 2009]. In a study of the Android operating system, 6 

out of 14 applications permanently maintained their passwords in RAM. Additionally, 

 55 



 

mobile devices are more likely to be lost or stolen thus providing physical access to 

possible adversaries.  In NYC, for example, 49% of the population has experienced 

mobile phone theft and/or loss and 60% of those phones are believed to contain sensitive 

and confidential information [Tang et al. 2012].  

Mobile devices, such as Android based smart phones, are beginning to be used in 

forward deployed military areas.  These phones are loaded with information such as local 

maps, objectives, and blue force tracker (friendly unit) locations.  Unfortunately, these 

phones (and other devices such as remotely piloted airframes with similar embedded 

processors) could easily fall into enemy hands.  In fact, a recent U.S. Air Force document 

entitled Air Force Cyber Vision 2025 highlights the need for trust-based techniques to 

protect captured mobile devices in adversarial territory against reverse engineering efforts 

[United 2012]. While protections should be considered for both standard desktop and 

mobile devices, the work described here targets the ARM Cortex A8 which is common to 

many smart phones and tablets, including Apple’s iPhone 3GS and 4, iPad first 

generation, iPod touch 3rd and 4th generations, and Samsung Galaxy Tablet to name a 

few.  Additionally, the architectures of more recent ARM processors including the A9 

and A15 are similar enough to that of the A8 to make the approaches in this work 

applicable with little modification. 

3.2 Core Ideas 

Encryption was the key concept used to mitigate vulnerabilities on disk: 

encrypting the disk provided confidentiality preventing access to sensitive information. 

By migrating the same solution down into RAM, it will be possible to circumvent similar 

attacks, including those highlighted above, at this lower level of the memory hierarchy.  
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This constrains the boundary available to an attack to lie at the processor itself, 

presenting a barrier that, in most cases, cannot be defeated without mechanical or 

electrical destruction of the processor chip (exotic techniques) as shown in Figure 7.  

Attacks on the device are possible, for example, by etching away the chip walls with acid 

to reveal internal bus lines, or electromagnetic and differential power analyses [Pope 

2008], [Kocher et al. 1999]. These approaches clearly increase the attacker workload by 

at least an order of magnitude, require expert knowledge, and cannot be exploited 

remotely over a network [Suh et al. 2007]. Moreover, while tamper resistant mechanisms 

that significantly increase the barrier to entry are already available [Chari et al. 1999], 

protecting circuits from invasive and side-channel attacks is an open research area that is 

not addressed in this work. The processor provides a natural boundary within which 

sensitive information can reside—it is a fundamental component of the TCB in this work.  

All components outside of the processor are assumed to be vulnerable to include RAM 

and its interconnections (data and address bus), other I/O devices, etc.   

 

 

Figure 7: CPU Boundary and Nascent Security Hardware—General ME Approach 
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Although the concept of memory encryption has been an active area of research 

for over three decades (see chapter 2), it has yet to be used at the core of operating system 

designs in order to provide confidentiality of code and data [Henson and Taylor 2012].  

The literature on memory encryption is largely concerned with three core approaches 

based on hardware enhancements [Lie et al. 2000], [Rogers et al. 2005], [Su et al. 2009], 

operating system enhancements [Chhabra et al. 2011], [Chen et al. 2008], [Peterson 

2010], and specialized industrial applications [Dallas 1997], [Arnold and Doorn 2004], 

[Steil and Domke 2008]. Unfortunately, almost all of the hardware and operating system 

enhancements have only been implemented through simulation or emulation, and as a 

result, the claims have yet to be validated and quantified on practical systems.  The few 

processors that implement memory encryption are characterized by low speeds and small 

addressable memory (<=16 bits) at use in low throughput (e.g. ATM, set top TV access, 

etc.) applications or specialized gaming systems. 

Memory encryption is solely concerned with the confidentiality of data and code 

during execution (i.e. in use), with the express purpose of increasing attacker workload 

associated with crafting exploits and stealing sensitive information.  It is interesting to 

note, however, that memory encryption would also hamper attempts to inject code, 

generally assumed to require memory authentication.  An adversary lacking an 

encryption key would be unable to successfully change an encrypted binary, as 

decryption would result in corrupt code and likely program termination [Barrantes et al. 

2003].   
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As mentioned in chapter 2, security hardware (see Figure 2), including encryption 

engines, has been integrated within commodity processors such as the Intel i7, AMD 

bulldozer, and multiple ARM variants--Intel’s advanced encryption standard - new 

instructions (AES-NI) include six instructions to speed up key expansion and encryption.  

Intel states that the new instructions can provide a two to three time performance 

improvement over software-only approaches for non-parallel modes of operation such as 

cipher-block-chaining (CBC) encryption [Gueron 2010].  Further, a 10-fold improvement 

can be realized for parallelizable modes including CBC-decrypt and counter-mode 

encryption (CTR).  As an example of the performance improvements possible, the 

authors ran TrueCrypt’s encryption algorithm benchmark test on a MacBook Pro with an 

Intel i7 dual-core, 266 GHz CPU.  Using a 5 MB buffer in RAM, the throughput averages 

202 MB/s without AES-NI support, and 1 GB/s with it – approaching the speed required 

to overcome encryption overheads on general-purpose systems. Unfortunately, systems 

developers have been slow to embrace these specialized, often vendor-specific, features 

[Vasudevan et al. 2011]. Little practical experimentation has been conducted and the 

improvements in security and performance have yet to be quantified [Henson and Taylor 

2012].  

Little work has been performed to explore the trade space of using security 

enhanced commodity processors to implement memory encryption (ME): encrypting all 

components of a process – stack, heap, code and data. Although more recent processors 

make memory encryption less costly, it remains unclear if FME is viable for everyday 

use or is limited to constrained tactical applications.  In past ME work, overhead has been 

measured at the coarse granularity of an entire process without regard to process 
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components in part due to the limitations of simulation.  The relationship between the 

overhead costs and security gains for encrypting particular process components needs to 

be understood (e.g. is there a particular component that can be protected with low 

overhead yet that holds high value code/data).  This work is the first to implement ME on 

a commodity processor, thereby allowing investigation of the low-level implementation 

details and the cost/security tradeoffs at sub-process component granularity.   

3.3 Related Research 

A thorough comparative analysis of memory encryption research, over the past 

three decades, is presented in chapter 2; unfortunately, although the community shares 

the high-level goals of the work presented here, much of the research stems from 

different motivations and is largely unrelated. For example, considerable effort has 

focused on identifying the ideal processor modifications that would enable memory 

encryption.  Additionally, a considerable body of work assumes that the adversary is the 

end user; it is therefore targeted toward digital rights management (DRM) and protection 

of proprietary software and algorithms.  Only recently has memory encryption been seen 

as a commodity and an effective technique for protecting end users, and their systems, 

from attack. 

Although security mechanisms in commodity processors have not been used to 

protect an entire system, there are examples of their use to protect particular applications.  

Several papers have highlighted approaches used to mitigate confidentiality attacks on 

memory.  For example, Tresor [Muller et al. 2011], aims to protect the FDE key by 

storing it only inside the CPU and performing encryption/decryption within that 

boundary.  By utilizing Intel’s AES-NI hardware, TRESOR was shown to perform better 
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than software based full disk encryption (17.04 MB/s vs. 14.67 MB/s) with the additional 

protection against cold boot and other snooping attacks.  A similar approach is taken in 

[Simmons 2011] except that registers used for performance counting are targeted for 

master key storage with multiple encrypted keys being stored in RAM.    While these 

techniques are an improvement over systems that leave memory unprotected, they are 

inadequate since it is possible to recover the key via a DMA injection attack on 

unprotected memory [Blass and Robertson 2012].  Additionally, much of the code/data 

targeted for protection by the key resides in the same unprotected memory.  This would 

be analogous to protecting the key to the front door of a home while having many of the 

home’s valuables sitting on the front lawn.  This additional sensitive information includes 

passwords and PINs, used for access to online resources, which are never stored 

permanently.  The work in this thesis extends the ideas described above to protect all of 

the sensitive information in memory. 

In a closely related approach [2008], Chen et al. propose an operating system 

controlled memory bus encryption technique for systems that offer scratch pad memory 

(SPM) or cache locking that is software controllable.  Both types of memory are available 

in some embedded processors including the Intel XScale series.  A new symmetric key is 

generated each time the system is booted and random vectors are used to initialize 

encryption at the granularity of a page.  The vectors are then placed in memory with the 

pages.  When a page fault occurs for a secure process, a specially crafted handler moves 

the encrypted page into the chip boundary and decrypts it there placing it into the cache, 

which is then locked to prevent leakage of sensitive data.  The locked region holds 

several pages of data and encryption variables.  In order to facilitate this special handling, 
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a boolean status variable is added to each process descriptor residing in kernel address 

space.  The authors note the scheme is appropriate when embedded systems designers can 

tolerate a significant performance overhead for protected processes.  Unfortunately, the 

work has only been implemented via simulation and with large reported overheads of 

from 137% to 850%.   

Instruction set randomization (ISR) is based on randomizing the language used by 

a system.  The goal of this field of work is specifically to mitigate remote code injection 

attacks (i.e. hack attacks).  Instructions are randomized with various techniques ranging 

from simple XOR’ing to AES encryption.  Since de-randomization must occur just before 

execution any code injected in normal form would essentially become garbage causing an 

exception in fairly short order.  In one recent effort, the overhead for implementing ISR 

for a web server and SQL database was 1% and 75% respectively [Portokalidis and 

Keromytis 2011].  Since instructions are de-randomized into memory before being 

executed, these techniques cannot prevent any of the shack attacks described earlier when 

an adversary has physical access to the system.  Additionally, ISR mechanisms do not 

extend to data and so provide no protection against malicious software that scans memory 

for sensitive information.  The research described in this thesis would defend against both 

remote code injection and physical access shack attacks protecting both the 

confidentiality and integrity of code and data. 

Industry offers several solutions for memory encryption including low frequency 

specialized processors for ATM use, expensive tamper resistant coprocessors for 

financial transactions, proprietary gaming systems and, more recently, enabling 

technologies in commodity processors to enhance trust. 
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An active area of secure hardware used in industry is the cryptographic 

coprocessor.  Primary examples include the IBM PCI-4758, PCI-XCC, which is shown 

abstractly in Figure 8, and the latest PCI-e.  These coprocessors include an impressive 

array of technology but are generally limited to IBM server platforms under customized 

contracts and tend to be used for financial and banking systems.  Rather than 

concentrating on protecting vulnerable RAM, these coprocessors focus on providing a 

small safe haven in which programs can operate on sensitive code and information.  

Unfortunately, the processor speeds and internal space are limited when compared to 

typical RAM sizes and the devices tend to cost thousands of dollars thus making them 

impractical for generalized use.  For example, the PCI-XCC is an adapter card including 

an IBM PowerPC 405GPr microprocessor (266 MHz), 64 MB of DRAM, 16 MB of flash 

EEPROM, 128 KB of CMOS RAM backed up by battery, tamper-detection circuitry, 

cryptographic processor and FPGA. It is certified at the FIPS 140-2 tamper resistance 

standard level 4 [Arnold and Doorn 2004].  The packaging around the unit is designed to 

detect or prevent all known physical attacks such as acid etching or probing.  A modified 

version of embedded Linux runs on the system providing a subset of typical features.  

The previous version (4758) used the IBM developed CP/Q message-passing 

microkernel.  The secure module is encased in a flexible mesh of overlapping conductive 

lines meant to prevent any physical intrusion.  If such intrusion is detected the system 

responds by zeroizing the internal RAM which holds the 168 bit Triple-DES secret key.  

The cryptographic processor performs at a throughput of 67 MB/s for Triple DES and 

185 MB/s for AES-128.  The stated purpose of the IBM secure coprocessor is to offload 
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computationally intensive cryptographic processes (e.g. specialized financial 

transactions) from the host server.  One of the developers of IBM’s 4758 cryptographic 

coprocessor has suggested that a general-purpose system with hardware support (such as 

a trusted platform module) could theoretically be turned into a somewhat less secure but 

more pervasive and less expensive version of the 4758 [Smith 2004]. 

 

 

Figure 8: IBM PCI-X Cryptographic Coprocessor 

While mostly constrained for use in playing games and other entertainment media 

(unless compromised) gaming systems are some of the most capable (e.g. fast processor 

speed and relatively large storage) to incorporate memory encryption techniques.  As an 

example of these systems, the Xbox 360 provides encrypted/signed bootup and 

executables, partially encrypted RAM, and an encrypted hypervisor [Steil and Domke 

2008].  These mechanisms are provided via a Microsoft proprietary processor with 64 KB 

of internal RAM, random number generation and encryption as opposed to the “off the 

shelf” processor used in the original Xbox.  While it is possible to use the Xbox as a 
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general-purpose platform, this requires compromising the system’s security measures 

first.  Alternatively, the Sony Playstation 3 includes many of the same security 

mechanisms of the Xbox 360, but allows the end user to partition the hard drive for use 

with a chosen (e.g. Linux) operating system.  However, the proprietary security 

mechanisms of the Playstation 3 are not available to the additional operating system 

[Conrad et al. 2010]. 

3.4 Summary 

This chapter described the general concept of memory encryption whereby code 

and data are never unencrypted outside the trust boundary provided by the processor. The 

threat model, core ideas and closely related works were also explored. Memory 

encryption is solely concerned with the confidentiality of data and code during program 

execution (i.e. in use) with the express purpose of increasing attacker workload 

associated with reverse engineering, crafting exploits, and theft of sensitive information.  

However, it can also provide various levels of integrity protection for code and data. The 

memory encryption literature has been primarily concerned with designing an idealized 

processor with encryption hardware integrated into the fetch-decode-execute process and 

explored through simulation.  More recently, software-only encryption has been explored 

but has suffered from large overheads.  The advent of security-enhanced commodity 

processors appears to offer the opportunity for memory encryption with acceptable 

overheads. 
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Chapter 4: Static Encrypted Processes 

The information presented in chapters 2 and 3 point to the idea that, in general, 

for memory encryption to succeed with acceptable overhead, three elements are required: 

1) a way to generate and protect key(s), 2) a place to store and operate on sensitive, 

plaintext information and 3) hardware accelerated encryption and decryption capabilities 

to overcome the processor-memory speed gap. An additional consideration is the 

requirement for either a secure operating system kernel or additional specialized 

hardware to protect all software processes (including the OS) from each other. 

Based on these requirements, a secondary survey of existing encryption support in 

commodity processors was conducted so as to locate an appropriate experimental 

platform.  A Freescale development system (iMX53) shown in Figure 9, including an 

ARM Cortex A8 processor was chosen for several reasons: it provides direct accessibility 

to low-level hardware, encryption primitives are available to the programer, and there is 

increasing market share associated with the ARM architecture (90% of smart phone 

processors in 2011). Although there are several ARM processors advertising encryption 

support, in reality only a few are currently available for development work and many 

suffer from a lack of thorough documentation, which is often the case for nascent 

technologies [Vasudevan et al. 2011]. 
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Figure 9: IMX53 Development Board 

Unlike Intel and AMD, ARM does not manufacture its processors.  Instead, ARM 

designs and licenses the processor architectures to silicon vendors, who supplement the 

ARM processor with proprietary or 3rd party hardware resources such as memory 

controllers, input-output and communications peripherals, and advanced power 

management capabilities.  Current generation ARM processors fall into three families: 

the Cortex-A, Cortex-R and Cortex-M processors.  Cortex-A family processors are 

application processors commonly found in smart phones, tablets, and small single-board 

general-purpose computers.  These processors include virtual memory managers, 

advanced hardware security capabilities and typically include high-performance on-chip 

multimedia and connectivity peripherals. The Cortex-R family is intended for hard real-

time and safety applications.  The Cortex-M family contains a broad spectrum of general-

purpose microcontroller offerings.  Both the R and M series processor families target 

deeply embedded systems and have many similarities: They provide sophisticated 

interrupt handling and are typically configured with industrial and/or automation 

communications interfaces, analog-to-digital and digital-to-analog peripherals, timers, 
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and (if present) limited display capabilities.  Memory protection and ECC logic are 

common in Cortex-R family processors, but rarely found in Cortex-M family processors.  

Cortex-R family processors typically have higher maximum clock rates and superscalar 

architectures, giving them a significant performance advantage over their Cortex-M 

family processor counterparts. 

A simplified block diagram of the IMX53 development platform is shown in 

Figure 10.  This inexpensive ($149) platform is open-source and comes with an ARM 

Cortex A8 1GHz processor which includes peripheral and hardware accelerated graphics 

support.  Critical components of the IMX53 for this research include the internal RAM 

(144 KB + 16 KB “secure” RAM), Symmetric/Asymmetric Hashing and Random 

Accelerator (SAHARA), L2 cache (256 KB) and 2 GB of external RAM.    

To generate and protect keys, the IMX53 includes several possibilities:  the 

security controller (SCC) implements “secure” RAM that can be used as general-purpose 

memory for data/software or as special “confidentiality-preserving” memory that protects 

cryptographic keys, passwords, PINs etc.  The 16KB RAM is divided into four, 4 KB 

chunks that can be explicitly controlled with respect to access permissions (based on 

mode of operation etc.).  The SCC contains a chip-unique 256-bit AES key initialized at 

the factory, which is used to encrypt any secure information in the small partition that is 

sent to external RAM.  While this functionality is not powerful enough for general 

memory encryption, it can be used to provide storage for multiple keys.  This will enable 

encrypted code to persist between boots since the process keys can be encrypted with the 

system key and stored in non-volatile storage (flash etc.) that resides outside the secure 

chip boundary.  The random number generator is based on two ring oscillators and can be 

 68 



 

used to generate keys for new processes or when re-encrypting current processes at given 

intervals to increase diversity. 

 

Figure 10: IMX53 Simplified Block Diagram 

There are several concepts available in the memory encryption literature with 

respect to where to store and operate on decrypted information.  The most prevalent idea 

involves the use of L2 cache as the store for plaintext information, and the IMX53 

includes 256 KB of on-chip L2 cache. Typical use of L2 cache in encryption work 

requires hardware modification of the CPU where software control of L2 cache is not 

available.  In other work, especially with embedded systems, there is often another type 

of internal memory that is user controllable either as the primary replacement of cache or 

in addition to cache.  This memory is often referred to as scratch pad memory (SPM) or 

tightly coupled memory (TCM) [Cho et al. 2007].  The IMX53 includes 128 KB of “on 

chip RAM” and 16 KB of “secure RAM”.  For the purpose of this work, this entire RAM 
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is considered secure since it resides within the chip boundary.  The secure RAM includes 

additional protections against access from a rogue process and can be used for data and/or 

storage of encryption keys.  Initial experimentation takes place utilizing the TCM.  

Exploration of the IMX53’s cache is performed in chapters 4 and 5.  

For hardware accelerated encryption/decryption, the IMX53 A8 chip includes the 

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) internal 

coprocessor.  SAHARA implements AES, DES and 3DES encryption, MD5, SHA-1, 

SHA-224, and SHA-256 hashing and hardware based (ring oscillator) random number 

generation as shown in Figure 2 [2].  The coprocessor also maintains its own DMA 

controller with an AHB bus interface so as to reduce the interaction/burden on the 

primary CPU.  For AES encryption, SAHARA includes electronic codebook (ECB), 

cipher-block chaining (CBC), counter (CTR) and counter with CBC-MAC (CCM) modes 

of operation.  Descriptors are used to notify SAHARA of blocks of memory (internal or 

external) for encryption/decryption.  Internal (secure) registers are cleared after a 

descriptor chain has completed processing to provide for usage by multiple, mutually 

distrusting processes.  Completion of encryption/decryption is signaled via interrupt.  The 

design of the IMX53 with the SAHARA as a coprocessor provides a significant 

advantage when faced with the challenge of overcoming memory decryption overhead.  

For example, it should be possible to decrypt either the next parts of a required process or 

a separate process while the current process continues execution.  

The final component of the TCB required for a memory encryption solution is 

either specialized hardware support to protect processes (including the kernel) from each 

other or a trusted kernel.  When specialized hardware is not proposed for this purpose, 
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the literature either ignores the requirement or assumes the existence of a secure 

microkernel.  The work in this thesis makes use of a small, from-scratch microkernel--

Bear--designed for critical/secure applications and operating through failures, errors, and 

malicious attacks.  Additional information on the Bear microkernel can be found in 

[Taylor et al. 2011].  Other members of the research group developed Bear for execution 

on Intel x86/VT-x/VT-d hardware.  In order to make use of it for this research, it was 

ported to the ARM A8 architecture as part of this effort. 

While several of the security mechanisms designed into Bear are not available on 

the ARM architecture due to virtualization limitations, the goal of reducing the 

microkernel size, and thus reducing the attack surface, is intended to produce a reduction 

in vulnerabilities.  Additionally, the small size of the microkernel allows for a thorough 

understanding of all system-memory interactions. This reduces the likelihood that 

unintended copies of sensitive data could persist in multiple locations for longer than 

expected or desired: A problem that has conspicuously plagued modern operating 

systems [Chow et al. 2004], [Dunn et al. 2012], [Tang et al. 2012]. 

4.1 Bootstrapping 

To bootstrap the iMX53, an on-chip ROM-based boot-loader is configured by 

chip pin voltage settings to read the kernel program image from either an SD card or over 

a serial link from an image server on system reset.  The Init.S assembly routine for the 

iMX53 provides a special program section containing instructions for the ROM-based 

bootloader to configure the processor’s IO multiplexers and electrical properties for the 

off-chip DDR memory.  The ROM-based bootloader then copies the program image from 
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an SD card or over the serial link into on or off-chip RAM (or a combination) and 

program execution begins.  

In order to facilitate porting and modification of the Bear microkernel on the 

IMX53, a tool was developed to quickly serve process images to the board.  The boot 

process for the iMX53 on the A8 involves a ROM bootloader first initializing several 

peripherals (USB, UART) and then loading a second bootloader into RAM and handing 

off execution.  The second bootloader (e.g. Uboot) then loads the full operating system 

and again hands off execution.  While there is a serial downloader protocol, the only 

available tool is Windows based and writes the image via serial download to a 

nonvolatile device such as the SD or micro-SD card before booting from one of those 

devices.  This presented several challenges for bare-metal development work on the 

board.  First, the development environment is Linux based thus making the Windows tool 

impractical.  Second, the alternative of loading and testing new code involved removing a 

micro SD card from the development board, placing the card into an SD adapter, 

inserting it into the development system and then issuing several low level DD 

commands to load the image--reversing these steps to get the code back into the 

development environment and finally powering up the board.  Bare metal work 

(including porting an operating system) requires frequent modification thus rendering this 

method of initialization and loading impractical. 

The tool is an extension of a python script used for interfacing with serial 

interfaces [PYSERIAL].  After first matching up the serial downloader protocol (chapter 

7.8 of the iMX53 manual) [i.MX53] with a captured USB stream from the available 

Windows tool, it was possible to develop the appropriate routines to initialize the DDR3 
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memory and place the vector table and executable code at the appropriate locations 

(bypassing the traditional 2nd bootloader) in RAM and execute the code. Appendix 1 

includes the complete code for the developed tool.    

On the Cortex-A processor, init.S first disables system interrupts, populates stack 

pointers for each of the processor’s 8 operating modes and overwrites the ROM 

bootloader’s interrupt table.  Data and bss sections are then copied out before init.S hands 

off to main().   

4.2 System Initialization 

The main() function lives in ~/<platform>/main.c; This file contains platform specific 

initialization for the peripherals used by Bear.  The current version performs the 

following steps in main(): 

1. Configures a periodic timer to call the kernel’s scheduler 

2. Initializes a UART for use as the system console 

3. Displays a banner 

4. Creates initial tasks 

5. Enables interrupts 

6. Switches from privileged to user mode. 

7. Begins context switching between tasks in the ready queue 

In order to port Bear to the A8, a few hardware components were necessary.  These 

included a clock, timer, an input/output interface (e.g. the serial UART) and the ability to 

service interrupts.  The iMX53 has two timers that could be used equally well for Bear: 

the general-purpose timer (GPT) and the enhanced periodic interrupt timer (EPIT).  The 

GPT is described as a 32 bit up-counter which can generate an interrupt when the timer 
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reaches a programmed value whereas the EPIT is described as a 32 bit down counter 

“set-and-forget” timer capable of “providing precise interrupts at regular intervals with 

minimal processor intervention” [i.MX53].  Although the GPT is used in several Linux 

distributions the EPIT is more precise and is used in this work.  Bringing up the EPIT 

first required enabling the EPIT peripheral clocks by setting all bits in the second clock 

gating register (CCM_CCGR2) location CG1 and CG2 (bits 5:2).  After that, control is 

established via five memory-mapped user-accessible registers.  Enabling the UART 

required similar steps to enabling the timer with some additional configuration of 

input/output muxes.  UARTs are vendor-specific peripherals that are common on all but 

the most rudimentary processors.  Custom hardware initialization and user-space driver 

tasks are required for each port of the Bear microkernel to proprietary hardware.  The 

timer routine was developed to fire an interrupt that calls Bear’s scheduler code.  Small 

modifications to Bear’s scheduler code were required due to differences in the 

architectural behavior such as the number of processor modes and amount of automation 

of register saving when entering those modes.  

4.3 Memory Encryption 

Recall that achieving acceptable levels of performance for memory encryption 

offers a significant challenge because there is an existing, growing, and well-documented 

speed-gap between processors and memory – improvements in processor speed continue 

to outpace improvements in memory speed [Patterson and Hennessy 1996]. Adding 

encryption latency to this already strained interface requires an overhaul of the basic 

fetch-decode-execute cycle employed by processors. Added to the complexities of any 

memory encryption solution is the fact that, unlike disk encryption where data is simply 
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stored for access, memory is used in a broad variety of dynamic access patterns.  For 

example, a running program will utilize RAM during execution for both stacks and heap 

space.  Additionally, the heap size, for any given program, is not normally known a-

priori.  The complexities of memory mapped input-output peripherals result in an 

inability to cache mapped regions, presenting a challenge since the overarching concept 

involves decrypting memory only when it is brought on chip.  During context switches, 

registers containing sensitive information normally save it to external memory. 

Additionally, numerous decisions must be made concerning the granularity of encryption. 

For example, should the entire memory be encrypted with a single key, or should 

programs, shared libraries, and data be encrypted independently using separate keys.  

Alternatively, should individual functions or cache blocks be used as the unit of 

encryption. All of these decisions incur a tradeoff between the number of keys that must 

be securely stored, versus the degree of protection and overlapping in operations that can 

be realized.  

While the hardware chosen for experimentation is representative of hardware 

found in current smart phones and tablets, it is important to note that there are a large 

number of less powerful processors currently being deployed for industrial use and power 

grid control and observation.  These processors are also being incorporated into vehicles 

and automated manufacturing equipment among others.  The inexpensive nature of this 

hardware is making it possible to use them to optimize macro processes through the 

collection and analysis of distributed sensors.  However, there is also the potential for 

attacks on and misuse of the sensitive information collected by these systems.   
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Smart electric meters, for example, are characterized by low-speed processors lacking 

memory management units (MMU’s) and cache with small amounts of RAM similar to 

low power ARM processors [McLaughlin et al. 2010].  McLaughlin et al. developed an 

approach to securing these meters, which involves diversity and encryption via 

encrypting return addresses before they are placed on the stack or heap.  If an attacker 

attempts to overwrite the return address, the overwritten address will be decrypted into 

garbage or an address that would likely lead to a fault. Developing the Bear microkernel 

from scratch on the A8 platform afforded the opportunity to emulate this important class 

of processors by not enabling the MMU or cache.  In this way, a baseline for memory 

encryption could be established with additional measurement of overhead along the 

spectrum toward a system representative of full-featured processors used in smart phones.     

The SAHARA coprocessor includes electronic codebook (ECB), cipher-block 

chaining (CBC), counter (CTR) and counter with CBC-MAC (CCM) modes of operation. 

Descriptors are used to notify SAHARA of blocks of memory (internal or external) for 

encryption/decryption. Internal (secure) registers are cleared after a descriptor chain has 

completed processing to provide for usage by multiple, mutually distrusting processes. 

Completion of encryption/decryption is signaled via an interrupt. The encryption-

decryption unit (EDU), is controlled via a descriptor chain, consisting of six 32-bit words 

which must begin on a word-aligned base address. These words include a header, length 

and pointers to blocks of memory to be encrypted, and a pointer to the next descriptor (if 

any).  The descriptor chain is built in iRAM starting at address 0xF8000000 and loading 

this address into the descriptor address register (DAR) begins the encryption process.  

Within the header, each bit or group of bits (generally 2-3) are selected to enable the 
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hardware module (e.g., encryption, authentication, random number generation), algorithm 

(e.g. RSA, DES), mode of operation (e.g. electronic codebook, cipher block chaining) 

and other details.  

A security API was developed to hide proprietary Freescale encryption details and 

is responsible for building the appropriate descriptor chain. For example, the following 

function call: 

EDU(‘E’, 0x000001A0, 0xF8000000, 0x70000000, 0xF8000040); 

causes the encryption unit to encrypt (E=encrypt, D=decrypt) a process block of 416 

bytes -- the current size of a process descriptor and stack -- from iRAM at location 

0xF8000000, placing the result in external RAM (eRAM) at location 0x70000000. For 

simplicity and repeatability, a 128-bit AES symmetric key is downloaded via JTAG into 

iRAM at 0xF8000040 (the final parameter above) and used for all process encryption. 

The IMX53 includes 64 KB of flash memory within the chip boundary that could be used 

to store keys persistently for use between boots.  

In practice an out-of-channel or standard key distribution scheme would be used 

in a full system implementation [Mel and Baker 2001].  Other techniques for key 

management are described in the memory encryption literature. For example, several 

schemes generate new random keys at system reset; these keys are used to encrypt 

processes, which are initially stored in plaintext [Chen et al. 2008]. While this does 

present a brief vulnerability during system boot, an argument could be made that the 

system would either be under the control of the owner at reboot or, if not, that much of 

the sensitive information that had collected in the memory would be lost.  While the 

contents of eRAM could potentially be captured from memory or the bus, this should 

only yield the potential for a known plaintext attack (i.e. brute force attack having 
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corresponding pairs of plaintext and ciphertext) against the key(s) used for encryption—

against which AES is known to be currently safe.  Recall that the key(s) and microkernel 

are never in eRAM.   Other work describes the method by which binaries are encrypted 

for protection while stored or transferred. 

One such method involves encrypting binaries with a public key. The private key, 

which is stored inside the processor, is used to decrypt the program in iRAM after it is 

delivered. The program is then re-encrypted with a randomly generated symmetric key to 

improve encryption performance. Regardless of the key generation and escrow 

techniques used, the keys are never available in eRAM. In the work described in this 

thesis, there is space for storage of many keys whereas several of the approaches to 

protecting FDE schemes rely on internal registers (e.g. SSE, debug, etc.) limiting storage 

to a small number of keys [Muller et al. 2011], [Muller et al. 2012]. Portokalidis and 

Keromytis [2010] modify the binutils objcopy utility in their instruction set 

randomization (ISR) work.  Binutils is able to parse ELF headers and access a binaries’ 

code—it was modified to encrypt application and shared library code with plans to 

extend the capability to Windows portable executable (PE) binaries.     

Programs that are run on these industrial processors are often load-once run 

“forever”, thus requiring little interaction and often remain unpatched for years. The first 

memory encryption prototype was developed to address this pervasive class of 

processors.  In this method, only the code is encrypted, using 128-bit AES symmetric-key 

encryption, and stored on disk as part of the executable binary. As a proof of concept, a 

hex-editing tool was used to manually inject the encrypted code for two simple processes 

into the binary.  Since AES was used in electronic codebook mode (ECB), the code 
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required padding to align on a 16-byte boundary.  This was accomplished via an 

assembly skip instruction padding the code with NOPs (i.e. 0’s in ARM) so that each 

process was 240 Bytes in length.  Other process components (data, stack, heap) are never 

encrypted as they remain within the protected iRAM as shown in Figure 11 (i.e. they are 

created after process execution begins). A small bootloader stored in internal ROM is 

responsible for initializing the hardware and loading the microkernel over the JTAG 

interface directly into iRAM. In a full system implementation, the microkernel could be 

stored in internal flash or encrypted with the persistent EDU key and stored on external 

media (e.g. SD card).  Next, a shell is bootstrapped using the on-board USART 

connection so as to allow programs to be executed. The newproc() function which builds 

the process descriptor and stack for new processes was modified in order to load the 

internal process entry addresses into register 14 (i.e. the link register).  The user processes 

are added to the scheduling queue and the microkernel decrypts the process code, storing 

it into a buffer in iRAM at 0xF8001000 after which normal process execution begins. 

This technique, referred to as static encrypted processes, only performs decryption once 

at code loading and is relevant to embedded systems where processes fit entirely within 

iRAM or flash [Henson and Taylor 2013].  
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Figure 11: Static Encrypted Processes—One Time Decryption 

4.4 Measurement 

To quantify decryption speed, generic data was used as the data itself is of no 

consequence to decryption overhead. The average number of cycles for decrypting 

chunks of eRAM ranging from 16 Bytes (the smallest size possible) to 128 KB was 

measured in order to determine performance of the EDU in AES 128 mode. These results 

are directly applicable to the implemented static encrypted processes since the cost for 

protecting processes in this technique is the one-time cost of decryption of code. The 

results of the decryption tests are shown in Table 2 below. 
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Table 2. Overhead for Decryption of Various Sizes (Chunks) of Memory 

 

The overhead associated with initializing the EDU (key expansion, etc.) is 

approximately 8096 cycles (as shown in the first row of the table). This was determined 

by measuring the cycles between calling and returning from the EDU function without 

regard to decryption status.  In order to measure the average number of cycles for 

decrypting a chunk of memory, a function was developed to poll the SAHARA status 

register (bits 2-0) for status 0x04, which signifies a descriptor has been completed 

successfully.  For the other rows, the cycles per bit cost of decryption is calculated by 

dividing the approximate cycles by the number of bits decrypted. For example, 

decrypting a chunk at the smallest possible size of 16 Bytes results in a cost of 

approximately 71.5 cycles per bit (9152 cycles/16*8).  

As the decryption chunk increases the overhead remains constant so that the 

measure of cycles per bit decreases (i.e. the overhead is amortized across a larger 

execution). Additionally, there are likely architectural optimizations leading to increased 

throughput at the larger chunk sizes.  The trend is shown graphically in Figure 12 below. 
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After 4KB, the improvement in cycles per bit is reduced dramatically. The ARM Cortex 

A8 architecture supports page sizes of 4 KB, 64 KB, 1 MB, and 16 MB. These 

measurements suggest that decryption overhead may be about the same whether 4 KB or 

larger page sizes are selected in future implementations. They also suggest that any 

granularity less than 4KB (e.g. a cache line of 64 Bytes) is sub-optimal as the total 

number of cycles is dominated by those required for initialization and the throughput 

rapidly deteriorates.  For reference, the Bear microkernel binary is approximately 38 KB 

and would take about 1 millisecond to decrypt (considering the system is running at 800 

MHz). 

 

Figure 12: Graph of Cycles/bit Vs. Number of Bytes Decrypted (64 B through 32 KB) 

ARM processors are targeted for operations in constrained space and power 

environments.  It is likely because of this that the performance of the EDU on the Cortex 

A8 is slow relative to figures presented in the memory encryption literature (which tends 

to target X86 processors). In AEGIS [Suh et al. 2007], a single AES unit is estimated at 

86,655 gates. Yet, AEGIS is demonstrated with an OR1200 soft core in FPGA with a 

total size of approximately 60,000 gates (meaning the AES unit is 144% of the original 
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core size). Recall that encryption hardware has been added to other processors such as 

Intel’s i5 and i7 and AMD bulldozer chipsets. Intel’s advanced encryption standard-new 

instructions (AES-NI) provide a significant speedup over both software and ARM 

hardware-enhanced encryption.  

Recall that a test was conducted on an implementation of TrueCrypt’s encryption 

algorithm benchmark test on a MacBook Pro with an Intel i7 dual-core, 2.66 GHz CPU. 

Using a 5 MB buffer in RAM, the throughput averages 202 MB/s without AES-NI 

support, and 1 GB/s with it – approximately 119 cycles for 64 Bytes. This represents an 

improvement of 88 times over the 10,496 cycles measured on the i.MX535.  While x86 

based processors do not tend to include user accessible iRAM, the combination of 

improved decryption performance and large caches in those systems might enable some 

form of memory encryption protection. Intel has recently filed a patent for processors 

incorporating memory encryption, perhaps indicating a move toward support in 

commodity processors [Gueron et al. 2013]. 

4.5 Summary 

This chapter has described work to implement static encrypted processes – a 

protection technology targeted to industrial and real-time processors such as those found 

in smart meters.  Other than the one-time initial decryption cost (dependent upon the size 

of the process code), there is little evidence of overhead using this method. Since 

embedded processors are continually increasing in on-chip memory, this technique 

represents an increasingly practical, low-overhead approach to memory encryption. 
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Chapter 5: Dynamic Encrypted Processes 

While the last chapter presented research targeted at lower end industrial 

processors, recall that memory vulnerabilities are common in systems ranging from 

servers and standard desktops to mobile computing devices (e.g. smart phones, tablets, 

laptops, etc.).  Additionally, usage patterns toward the mobile end of the spectrum may 

exacerbate the problem since many users of smart phones rarely reboot these systems 

maintaining them in an “always on” fashion resulting in the persistence of sensitive 

information [Karlson et al. 2009]. Further, in a study of the Android operating system, 6 

out of 14 applications permanently maintained their passwords in RAM. Additionally, 

mobile devices are more likely to be lost or stolen providing physical access to possible 

adversaries.  In NYC, for example, 49% of the population has experienced mobile phone 

theft and/or loss while 60% of those phones are believed to contain sensitive and 

confidential information [Tang et al. 2012].  

Mobile devices, such as Android based smart phones, are beginning to be used in 

forward deployed military areas.  These phones are loaded with information such as local 

maps, objectives, and blue force tracker (friendly unit) locations.  Unfortunately, these 

phones (and other devices such as remotely piloted airframes with similar embedded 

processors) could easily fall into enemy hands.  In fact, a recent U.S. Air Force document 

entitled Air Force Cyber Vision 2025 highlights the need for trust-based techniques to 

protect captured mobile devices in adversarial territory against reverse engineering efforts 

[United 2012].  This chapter will move away from the static encrypted processes model 

where code was protected during storage and transit and decrypted once before 

execution.  Instead, it presents a more general approach, dynamic encrypted processes 
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(DEP), where there is sufficient memory pressure (i.e. processes + data are larger than 

available iRAM) to force processes back to external RAM during execution. 

Unfortunately, the memory encryption literature fails to adequately consider the 

question of performance and granularity of encryption.  Since the majority of research is 

conducted via simulation studies, the intricacies of implementation are not considered in 

detail.  The schemes tend to allow granularity only at the process level—either an entire 

process is considered protected or none of it is.  In fact, many of the techniques consider 

the fact that there may be many processes running which do not require encryption 

protection and this tends to improve the overall performance for these scenarios.  The 

problem with this approach is that the onus for deciding which processes are sensitive 

and which are not is placed on the developer or end user.  This proposition does not bode 

well considering a similar situation with regard to encryption of data at rest.  One of the 

reasons for the move toward full disk encryption is the difficulty encountered by system 

administrators in knowing which parts of a file system to selectively apply encryption 

protections to [Brink 2009]. 

Since the work described here involves the first implementation of memory 

encryption on general-purpose hardware (vice simulation), it is possible to consider 

additional levels of encryption granularity.  To some extent, the previous chapter delves 

into the overhead associated with the granularity of decryption based on size of the 

decryption chunk.  While this direct measurement based on size is one way to address 

granularity, another intuitive choice is the process segment.  Process segments include 

code (text), data, stack, heap and the process control block (PCB) as shown in Figure 13.   
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Figure 13: Process Segments in Bear Process 

While traditional PCB’s include many fields such as the execution state, address 

space identifiers, and scheduling priority, the simplified PCB in this work maintains only 

the stack pointer, stack base, process id and message id for communication.  The 

microkernel (i.e. the developer of the microkernel) controls the creation and placement in 

memory of the process PCB, stack and heap objects while the assembler, linker and 

loader accomplish this for code and data segments.  Statically allocated and global data 

that are initialized reside in the data segment while uninitialized data is represented in the 

BSS.  Local (i.e. automatic) variables are allocated on the stack, as it grows downward.  

Depending on how deep the stack grows for a particular function call, sensitive 

information such as passwords may remain in an unused part of the stack indefinitely 

[Chow et al. 2004].  The location of string literals used in a binary is dependent on the 

linker used but can be controlled via a linker script and is often added to a read only 

section in the data segment as is the case in this work.   
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As described by Chow et al. [2004] sensitive information is copied to multiple 

segments via the complex interaction between the operating system and applications.  For 

example, their work studied the propagation of a password entered into the Emacs editor 

and found that the password was available in 7 different areas including a global variable 

and on the stack.  What would be more useful was unfortunately reserved for future 

work—studying how long data persists in particular memory segments.  While outside 

the scope of this work, an additional question that should be explored through empirical 

study is whether particular segments are more commonly used for sensitive information 

than others. 

  5.1 Dynamic Encrypted Processes Implementation 

The DEP prototype allows swapping of encrypted processes to eRAM. Process 

segments (other than the data segment) are stored in eRAM in encrypted form and 

brought into iRAM, decrypted, and executed on-demand.  The PCB/stack and heap 

objects are updated in iRAM during execution.  Once the scheduling quantum expires, 

the context switch routine sends the PCB/stack to the EDU, which encrypts it and stores 

it back in eRAM.  Segments are re-encrypted before being sent back to eRAM with the 

exception of code, which does not change and so does not require re-encryption. In the 

absence of an enabled MMU, this movement of code and data required some virtual 

memory management (e.g. updating of stack pointers, addresses, program counters, jump 

addresses, etc.) where all segments of a given type correspond to a single internal buffer. 

This management was taken care of via modifications to the process creation, context 

switching and heap allocation routines as described below.  

For the bulk of literature surveyed in ME, processes begin execution for a short 
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period in plaintext in eRAM.  In fact, code is first loaded in plaintext and then encrypted 

in the industrial application processor DS5002FP [Gao et al. 2006]. From one 

perspective, this short window of vulnerability is not a major concern—processes are 

generally loaded when the system is under the control of an authorized user.  If an 

attacker has control of the system and can load applications then they would have little 

need of performing a costly memory attack.  Naturally, this intuition is heavily dependent 

upon the threat model in use.  In this work, the threat model considers an attacker who 

does not have authorized access to a device.  In the case where the threat model includes 

digital rights management (DRM) of proprietary algorithms the attacker may be an 

authorized user, in which case this short window could be a concern.  Additionally, the 

idea that code is initially loaded in plaintext implies that it is stored in an unprotected 

form on disk.  This means that an attacker could already analyze the binary providing an 

advantage when attempting to attack the system during operation.  In this work, it is 

assumed that ME would be used in conjunction with encryption on disk in a full 

implementation (e.g. encrypted code would be injected into the binary).  For this 

research, code is loaded to eRAM in plaintext and is encrypted in place during 

initialization.  However, although there is only a momentary weakness presented from 

beginning with processes in plaintext in eRAM, this is an unnecessary risk.     

The normal process, newproc(), involved allocating space in eRAM and then 

building and loading the appropriate process stack there.  In order to begin with 

encrypted processes, the sequence in newproc() was modified such that after allocation, 

the process’ PCB and stack are built in the internal buffer space (at 0xF801D024) and 

then encrypted and sent to eRAM.  As mentioned previously with SEP, the entry point 
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for each process is adjusted in the link register to point to the iRAM code buffer at 

0xF8001000.   

The original heap allocation function in Bear utilized either the 1 GB eRAM or 

the 128 KB iRAM.  In order to be able to use both, allocating iRAM buffers and eRAM 

segments, a changeheap() function was developed.  In this way, the bookkeeping 

mechanisms previously developed in the heap allocation function could be used for 

iRAM objects rather than carving the internal space in an ad-hoc fashion.  Currently, only 

one iRAM buffer is created for each of the code, PCB/stack and heap segments.   

Figure 14 illustrates how the prototype decrypts the process control block (PCB) 

and stack (as one chunk); dynamically allocated memory and code are decrypted 

separately. In order to measure overhead at the process segment granularity, encryption 

can be enabled for each segment independently or in any combination.  Changing the 

segments targeted for encryption requires recompilation of the microkernel and is 

controlled via preprocessor directive.   

Once process execution begins, the swprocs() routine handles the 

decryption/encryption of both code and the PCB/stack segments.  Of note is the fact that 

the cache is “grayed out” because it has been disabled in the initial Bear prototype to 

include the first dynamic encryption enhancement.  The process context switch provides 

a natural point at which to perform decryption of these segments. Since the prototype 

does not currently utilize a paging mechanism, there is no similar point at which to 

intercede in accesses to global/static data, which are solely controlled by the compiler. 

Therefore, global/static data currently remains in iRAM. 
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Figure 14: Dynamic Encrypted Processes 

A modified linker script (shown in Appendix 2) makes use of the memory 

command describing the available memory regions (iRAM and eRAM).    IRAM is 

defined to begin at 0xF8002000 to account for exception vectors, encryption keys, 

descriptor chains etc. that begin at 0xF8000000.  Initially, protected code segments are 

placed into external RAM by the compiler and modified linker script while the 

microkernel is loaded to iRAM. As processes are added to the queue for execution, space 

is allocated in eRAM for the PCB and stack.  The PCB and stack are built in iRAM and 

then encrypted to the external memory previously allocated.  Modifications to the process 

creation routine include storing the iRAM code buffer location as the starting program 

counter (PC) for all processes.  Once a process is selected for execution by the scheduler, 

the associated segments (code, PCB/stack) are decrypted by the encryption/decryption 

unit and placed in the respective iRAM buffers (1,2).  Execution is then handed off to the 

CPU and execution continues in the normal fashion (3).  Once the quantum expires, the 
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context switching routine (swprocs) encrypts the PCB/stack and heap (if any) segments 

back to the appropriate eRAM locations (4,5,6).  The cycle continues as the next process 

is selected for execution and decrypted to the iRAM locations.  

The modifications essentially add a simple form of virtual memory management 

(where all external memory segments map to one internal buffer location) with the 

addition of the encryption and decryption steps.  Recall that the PCB/stack and heap 

segments require both decryption to iRAM and reencryption to eRAM while code only 

requires decryption, as it does not change. 

Heap objects are more difficult to protect in a transparent manner since they are 

not necessarily known a-priori whereas the PCB and stack are strictly controlled by the 

microkernel and the code size is known.  Automatic variables, which are created and used 

within a block of code, make use of the stack transparently whereas the creation of heap 

objects requires user intervention via calls to malloc and free.  Because of this, the first 

iteration of protection for heap objects involved modification of user programs.  

However, a different approach allowed for transparent protection of heap objects.  The 

kmalloc function was modified such that heap objects would be allocated to both iRAM 

and eRAM locations.  A large iRAM buffer (~70KB) was set aside for heap object 

creation. Objects make use of the kmalloc slab allocator within the iRAM buffer.  

Because objects are allocated at iRAM locations, there is no additional bookkeeping 

needed when a process references them.  At context switch, the entire internal buffer is 

encrypted to the eRAM location.  The kmalloc function was also modified to maintain 

bookkeeping information about each process’ eRAM heap locations in an internal list for 

use in decryption.  Transparency of heap object protection requires strict adherence to 
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proper memory allocation and access techniques (i.e. using kmalloc instead of directly 

accessing a memory location via pointers that was not previously allocated).  Depending 

on the size of the allocated segments, two alternative approaches are available for heap 

protection. If all objects fit within the large iRAM buffer, the set of heap objects is 

decrypted there.  However, if the objects are too large, decryption of data on-demand at 

the size appropriate to the application (or smallest size possible) is used.  For 

completeness, both techniques are explored in this work.   

As a consequence of loading protected code directly to eRAM, the linker inserts a 

veneer to reach functions located in iRAM.  Veneers are sections of code generated by 

the linker and inserted into a program.  They are used in order to be able to mix various 

types of code (e.g. ARM and Thumb) and when a branch exceeds the architectural limits 

in ARM.  For example, the range of a branch with link (bl) instruction is 32 MB, 16 MB 

and 4 MB for ARM, Thumb-2 and Thumb instructions respectively.  Because we are 

loading user code to eRAM (0x70000000-AFFFFFFF) but leaving kernel functions in 

iRAM (0xF8000000-0xF801FFFF) veneers are required.  One veneer for the kprintf() 

function was inserted several words below the last external process as shown in Figure 

15.  Address 0x720002E8 was the address of the iRAM kprintf() function (0xF8007190) 

which is immediately loaded into the program counter (PC) after the branch.  When the 

code for a process was moved to iRAM, the veneer address was adjusted to point to an 

invalid memory location.   

 

Figure 15: Kprintf() Veneer (left) in eRAM with Normal Kprintf() Call (right) in iRAM 
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In order to overcome the veneer issue, various techniques were explored.  One 

such technique was hijacking the global offset table (GOT).  The GOT is used to provide 

absolute addressing for some variables.  This allows for these absolute addresses to be 

used, for example, with position independent code (PIC).  The PIC will search the GOT 

for absolute addresses when necessary. Unfortunately, examination of the GOT revealed 

that the veneers are not included there—the address could not be changed to an 

appropriate iRAM address at run time.  Besides GOT hijacking, several compiler 

directives were explored.  While the –fPIC directive produces PC-relative addressing, it 

does not mitigate the issue with the jump veneers.  The compiler directive –mlong-calls 

tells the compiler to perform function calls by first loading the address of the function 

into a register and then performing a subroutine call (blx) on that register.  Compiling the 

code with this directive removes the veneer.  Internal addresses are hard coded into the 

instructions for each process.  Code was compared before and after moving from eRAM 

to iRAM.  Both the code and data references were correct in the iRAM code as shown in 

Figure 16 (note the absence of the kprintf veneer as the kprintf() address is now loaded 

into register 3).  This new approach allowed for the loading of code to eRAM and 

dynamic movement between eRAM and multiple iRAM buffers. 
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Figure 16: Sections of Code after Moving to iRAM (left) from eRAM (right) with –mlong-calls 

In order to take advantage of the independent nature of the EDU engine the 

decryption in the swprocs() routine, including the code and PCB/stack, was placed early 

in the function.  In this way, the decryption work was overlapped with the context 

switching work (e.g. bookkeeping and queue maintenance) saving an average of ~10,000 

(as shown in the measurement section) cycles during context switching.  This idea of 

overlapping work with memory accesses is common in computer architecture [Hennessy 

and Patterson 2006].  

5.2 Cache and MMU Enabled DEP 

Caching is one of the techniques developed to overcome the well-known 

processor-memory speed gap and both the levels and sizes of cache have been increasing.  

Since this work adds additional cycles to the processor-memory gap, enabling the cache 

and MMU was extremely important.   The iMX535 A8 has a modified Harvard 

architecture with 32 KB of L1 instruction and data cache, and 256 KB of shared L2 

cache.  During the initialization routine, the system coprocessor CP15 control register I 

bit (bit 12) and C bit (bit 2) are used to enable the instruction and data caching 

respectively.  A separate bit in the auxiliary control register, bit 1, must be set to enable 
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the L2 cache.  However, even with caching enabled, data will not be cached without a 

functioning memory management unit (MMU).  This behavior is due to the fact that data 

accesses may include read/write sensitive peripherals and/or components that change the 

memory in some way, which is not safe without the added protections of the MMU.  

Setting the M bit (bit 0) in the control register enables the MMU.  Unfortunately, the 

MMU requirement is not listed in the A8 technical reference manual (580 pp), cortex A 

series Programmer’s Guide (455 pp), or the proprietary IMX53 reference manual (4,947 

pp).  However, it was listed in the V7-A architecture reference manual (2,158 pp) as 

shown below: 

In ARMv7: 

• The SCTLR.C bit enables or disables all data and unified caches, across all levels of cache visible to 

the processor. 

• The SCTLR.I bit enables or disables all instruction caches, across all levels of cache visible to the 

processor. 

If the MMU or MPU is disabled, the effects of the SCTLR.C and SCTLR.I bits on the memory attributes 

are described in: 

• Enabling and disabling the MMU on page B3-5 for the MMU 

The MMU can be enabled and disabled by writing to the SCTLR.M bit, see c1, System Control Register 

(SCTLR) on page B3-96. On reset, this bit is cleared to 0, disabling the MMU 

When the MMU is disabled, memory accesses are treated as follows: 

• All data accesses are treated as Non-cacheable and Strongly-ordered. Unexpected data cache hit 

behavior is IMPLEMENTATION DEFINED. 

• The treatment of instruction accesses depends on the value of the SCTLR.I bit: 

When I == 0 

All instruction accesses are Non-cacheable. 

When I == 1 

All instruction accesses are Cacheable: 

• Inner Write-Through no Write-Allocate 
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• Outer Write-Through no Write-Allocate. 

This meant that even though both code and data caching were “enabled” via the 

cache control register as shown below, no data caching was occurring without the MMU 

being enabled.  In that mode of operation, small improvements to overall performance 

were noted.  After discovering the reliance of data caching on a functioning MMU, the 

MMU was enabled via the last sequence of ARM instructions below.  After doing this, 

the performance of the system was improved dramatically.  The MRC and MCR ARM 

instructions are used to move data from a coprocessor to a register and vice versa.  

Coprocessors are represented in the form pn where n represents the number of the 

coprocessor.  In the example below, the coprocessor used is p15.  Caching is enabled by 

or-ing the appropriate bits of the 32 bit control data and then writing that data back into 

the coprocessor registers (represented by cn where n is the number of the register). 

mrc p15, 0, r0, c1, c0, 0@read CONTROL REGISTER 
     orr r0, r0, #(0x1 << 12)@ Instruction Caching 
     orr r0, r0, #(0x1 << 2)@ Data Caching 
    mcr p15, 0, r0, c1, c0, 0@ enable instruction and data caching  
 
     mrc p15, 0, r0, c1, c0, 1 @read AUXILIARY CONTROL REGISTER  
    orr r0, r0, #(0x1 << 1) 
     mcr p15, 0, r0, c1, c0, 1 @enable L2 cache  
 
     mrc p15, 0, r1, c1, c0, 0 @read CP15 Register 1 
     orr r1, r1, #0x1 
     mcr p15, 0, r1, c1, c0, 0 @enable MMUs  
 

Several problems were anticipated as an unintended consequence of enabling the 

cache since memory encryption is essentially a special case of self modifying code 

(SMC). Self-modifying code includes any code that purposely changes its instructions 

including simply copying instructions from one location to another [Cortex-A].  The 

concern with traditional self-modifying code (not encrypted) is the execution of stale 
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instructions that have been cached before the modifications take place.  These coherency 

issues arise in systems where multiple actors including, for example, the CPU and 

DMA engines modify multiple levels of code and data. In the IMX53, these levels 

include the L1 and L2 caches, iRAM and eRAM. When utilizing SMC, the just in time 

(JIT) compiler or programmer is responsible for manually maintaining the cache 

(invalidation and cleaning) at the appropriate times as the memory hierarchy is used in a 

way unanticipated by the cache controller.  In the case of a ME system, the stale 

instructions in eRAM are actually encrypted.  If the system were to cache those 

instructions, an exception would occur upon execution.  Additionally, sensitive 

information might leak from cache to eRAM during cache line eviction.  Based on a 

thorough survey of ME research, this is believed to be the first work to identify and 

explore the problem of SMC. 

Enabling both the L1 and L2 cache and code and data caching resulted in a major 

speedup of the baseline-unprotected system.  Unfortunately, enabling the cache and 

MMU with PCB-stack protection resulted in exceptions, while code protection seemed to 

work properly.  Investigation of these exceptions revealed that initial concerns over SMC 

issues were well founded.  PCB-stack protection worked when caching instructions 

only, but broke once data caching and the MMU were enabled. Further, this led to 

the suspicion (which was verified by experimentation) that the instructions being 

executed were stale—only the instructions from the first process were executing 

after each context switch.  Certain portions of the PCB-Stack that were written during 

the initial process build were not being encrypted by the EDU as shown in Figure 17 

below.  This is due to the fact that those words were cached after being written to.  These 
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cached words were not being overwritten by the EDU’s DMA engine.  Normally, the 

entire block (0x1A0 or 416 Bytes) would be encrypted.  The portions of memory not 

updated by the EDU fall along 64 Byte cache-line boundaries (e.g. 0xAFFFFCBC is the 

end of a 64 Byte cache line)—confirming that the caching of these lines was preventing 

the encryption update.       

 

 

Figure 17: Process Control Block & Stack Before (bottom) and After (top) Encryption 

In order to mitigate the SMC issues, routines were developed for cleaning, 

invalidating and locking the cache.  Additionally, the ARM data synchronization barrier 

(DSB), data memory barrier (DMB) and instruction synchronization barrier (ISB) 

instructions were explored.  Cleaning results in any “dirty” memory locations (those 

updated in the cache but not in iRAM or eRAM) to be updated in RAM while 

invalidation causes the system to read/write the external memory location (updating the 

code/data in the cache observed by the CPU).  In the ARM Cortex A8, the L1 data cache 

is exclusive (items in L1 are not in L2) while the instruction cache is inclusive.  Clean 

and invalidate functions for both data and instructions were developed for the L1 and L2 

caches.  These functions could be targeted to invalidate/clean from a single cache 

line up to the entire cache. 

 98 



 

In order to mitigate the issue of incomplete encryption to eRAM, a cache 

invalidation for the external PCB-stack location was invoked just before encryption.  

A function was developed to identify the 64 Byte cache line boundary preceding a 

memory address since invalidation/cleaning must be accomplished along these 

boundaries.  The new sequence of instructions were as follows: 

chunk=find_chunk((uint32_t)p1->sb); //find the 64 Byte boundary  
uni_invbyaddy(chunk);  //invalidate the unified cache (L2) at the proper address  
EDU('E',0x000001A0, 0xF801D00C, (uint32_t)p1->sb, 0xf8000040); 
 

Invalidating the eRAM PCB-stack location resulted in the entire PCB-stack being 

encrypted, confirming the SMC cache coherence issue. 

Comparing the internal buffer used for each processes stack and PCB before 

and after an exception occurred with the same buffer while executing single 

instructions (i.e. in debug mode) verified that the cache is cleaned and invalidated 

when halted in debug mode and during instruction stepping.  In the latter mode, the 

internal buffer was updated with the next processes data during context switch 

whereas during full speed operation the data was not updated. Because of this, the 

system would context switch without issue in debug mode. Considering the issue at 

hand was one of cache coherence, this made the troubleshooting more difficult since 

halting the system to examine it would result in an update to iRAM and eRAM from 

cache. This meant that isolating the cache coherency issues had to be done without 

the benefit of halting and memory/register introspection. In order to effectively 

debug in real time, the scheduling quantum was increased to 1 second per process 

with extensive printing of internal and external memory segments.    
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Even after the PCB-stack of each process was fully encrypted, the system would 

only execute the first process, throwing an exception as soon as a context switch to the 

second process occurred.  By stepping through the context switch, and manually updating 

the program counter and other variables as required, it was possible to force the 2nd 

process to execute.  However, when this was done the process reported the details 

(process ID and count) from the first process.  All three processes used for 

experimentation are mapped to the same buffer in iRAM.  With the original processes 

data cached, the changes made by decrypting the second process’ PCB and stack to the 

iRAM buffer were never observed by the processor.  In an experiment to verify this, 

three internal buffers were created, one for each protected process.  In this case, each of 

the three processes executed once before an exception occurred after the context switch 

back to the original process.  In this case, the data for each process was correct (process 

ID and count).  This meant that the original PCB and stack for each process was loaded 

into the cache.  This allowed for one execution of the process, however the updates to 

iRAM made during execution were not reflected in the cache causing an exception to 

occur when the processes attempted to run a second time.  A similar approach was 

required to solve the stale PCB-stack issue as was used for the incomplete encryption to 

eRAM—the internal buffer had to be invalidated before the next processes data was 

decrypted there.  With the addition of these two properly placed invalidations, PCB-stack 

protection with the L1/L2 cache and MMU enabled was complete.   

After discovering the SMC issues in the PCB-stack, the correctness of the code 

protection mechanisms with instruction caching enabled was of concern.  Although the 

code protection seemed to be working properly with the instruction cache enabled, this 
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was not the case.  The concern was that since all the code for the 3 processes was using 

one internal buffer (similar to that used for the PCB-stack protection) the code was 

indeed working but was not being updated for the 2nd and 3rd processes.  Since the data 

that was being printed out to confirm proper execution was maintained in the PCB-stack 

(process ID and count) as automatic (stack) variables, that data was being updated and 

displayed properly.  However, only the code from process 1 was being executed, as that 

was the code that was first cached.  In order to demonstrate this, an experiment was 

conducted whereby the process id was “hard coded” into each processes read-only print 

string to match up with the data from the PCB-stack.  The results of this experiment with 

instruction caching enabled and disabled are shown in Figures 18 and 19 below. 

 

Figure 18: Process Output with Hard Coded PID--Instruction Caching Enabled 

 

   Figure 19: Process Output with Hard Coded PID--Instruction Caching Disabled 
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The figures show that while the system appeared to be executing properly, with 

the EDU decrypting code to iRAM during each context switch, only the code of process 1 

was truly executing.  Note the 1 after the [proc while the PID cycles through 0, 1, 2 and 

back to 0 with the instruction cache enabled.  The hard coded “[proc 1” is from process 

1’s text segment.  In the latter case, the cache is disabled so that the decrypted code from 

each process is executed from iRAM resulting in both the hard coded PID and the PID 

from the stack cycling. 

Recall that the instruction cache is inclusive on the Cortex A8.  Because of 

this, both the L1 and L2 cache had to be invalidated for instructions (L2 first).  With 

the invalidations in place just before the code decryption, each process was 

executing its own code and data.  The question remained as to the effects on 

overhead of invalidating various levels of cache during context switches. For 

example, how do the average cycles for context switch compare with only the L1 

enabled vs. both the L1 and L2 (and associated invalidations)? Even with the 

invalidation of code during each context switch, having both the L1 and L2 caches 

(and MMU) enabled reduces the number of cycles by about more than half when 

compared to the case where no cache is enabled.    

5.3 Performance Measurements 

Since the performance degradation of memory encryption results in less 

likelihood of its use, it is an extremely important factor in the comparison of different 

schemes. Recall that the hypothesis in this work is that vulnerabilities associated with 

memory can be mitigated with acceptable performance given security-enhanced 

commodity processors.  In Chapter 4, the static encrypted process (SEP) prototype was 
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quantified in terms of total number of cycles for decryption of generic data blocks as 

reported by the Cortex A8 performance monitors. That characterization is appropriate 

since decryption should only happen once with the code essentially executing in 

perpetuity after that.  However, in order to thoroughly evaluate overhead for dynamic 

encrypted processes, two micro-benchmarking applications were required—context 

switching and page allocation.  It is specifically in these two activities that overhead is 

introduced in DEP.  Recall from the implementation details that in order to make ME 

transparent to the end user the context switch function was targeted.  For very small 

processes where the PCB/stack, code and heap objects are less than 4 KB each, the only 

significant overhead is encountered during the context switch.   After some 

experimentation, it was fairly clear that several factors were key to understanding the 

performance of ME—the size of protected segments and the amount of spatial and 

temporal locality exhibited.  Segment size, along with the level of caching, are varied in 

the benchmarking applications.  Smartphone workloads tend to be interactive and exhibit 

a high degree of locality and this assumption is made for the two benchmark programs 

[Guttierrez et al. 2011].  However, in order to understand the effect of a lack of locality 

on ME, the fast Fourier transform was implemented. The FFT represents the worst 

possible case performance of the system due to a pathological lack of locality.  When 

used for benchmarking in the ME literature, the FFT repeatedly demonstrated significant 

overhead (normally the worst of any benchmark).  

Context Switching Benchmark 

To measure the overhead for segment protection, the context switching 

benchmark was instrumented with performance monitoring code.  The A8 performance 
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counter was initialized with counters set to 0 before each measurement.  A start and stop 

count were used to capture the cycles before and after the code of interest.  The A8 is a 

superscalar processor with a dual 13-stage pipeline, which can result in varying 

performance.  Additionally, it is possible under pathological cases (e.g. asynchronous 

exception at the wrong time) for the performance monitors to be inaccurate.  In order to 

compare the relative performance of ME protection approaches, it was necessary to 

determine the minimum number of context switches that yielded reliable metrics.  The 

average number of context switches and standard deviation for 10, 100, 500, 1000 and 

2000 context switches were compared.  Neither the average nor the standard deviation 

changed significantly for 1000 context switches or more.  Therefore, 1000 context 

switches were sufficient for performance comparisons.  For all measurements, the system 

is running at 800 MHz with a scheduling quantum of 300 ms.  

Since the EDU can run in parallel with the primary CPU, it is possible to have it 

decrypting a component while continuing to process a context switch, for example.  

While this overlapping can reduce overhead, it can also cause errors if not dealt with 

properly. An interrupt can be enabled to notify the system when the EDU has completed 

execution. However, servicing multiple nested interrupts would require a significant 

rewrite of the system as it currently disables all interrupts during the context switch.  In 

order to ensure that memory was appropriately updated before continuing (and thus that 

the measurements were accurate) a watchword was placed near the end of the section 

being decrypted.  An empty while loop was used to check for the watchword indicating 

the decryption was complete.   
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In order to evaluate the relative performance of the system, the total number of 

cycles required for executing the unprotected system running three simple user processes 

was measured. Next, the total number of cycles for protecting the various process 

segments of the user processes was measured independently, allowing for the calculation 

of accumulated overhead (i.e. slowdown). The combination of system frequency (800 

MHz) and cycles was used to determine the approximate execution time for a given 

experiment.  These measurements on commodity hardware are believed to be among the 

first in the ME literature (the only other example being an FPGA soft core)—allowing for 

more granular exploration (e.g. process segments) and higher confidence in the results.  

Measurements for each component are shown below in Table 3. For comparison, 

a simple “Hello World” process requires approximately 10 million cycles (~12.5 ms).  

For measurement, the system schedules the three simple processes in a round-robin 

fashion with a 300 millisecond-scheduling quantum, resulting in approximately 200 

context switches per minute. PCB-stack and code protection is completely transparent to 

processes (and developers) since the protection is implemented within the context switch 

routine.  As previously mentioned, for small processes, costs are incurred only during the 

context switch, not during process execution.  The type of process does not impact the 

context switching overhead.   
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 Table 3. Context Switch Benchmark Overhead 

 

The unprotected context switch routine with no caching averages approximately 

16,384 cycles (~20.5 microseconds) as shown in the first row of the table. The overhead 

for protecting the segments is fairly large: approximately 206% each to protect the PCB-

stack and heap when compared to the unprotected context switch. This effect is 

exacerbated with each additional level of caching-the performance of the baseline, 

unprotected context switch is improved significantly (over 36X) while the boost in 

performance for protected execution is less impressive.  This is because the performance 

improvements are constrained by the EDU’s execution time.   

While the overhead is large, it is only incurred on average 200 times per minute. 

Additionally, the time of each context switch (even with the overhead) is completely 

dwarfed by the process execution time (scheduling quantum).  The context switch time is 

approximately 1/1000th the 300 ms quantum.  Thus the total overhead per minute for a 

system with PCB/stack, code and heap protection is about 100 milliseconds, resulting in a 

total of ~10 seconds of overhead after 100 minutes of execution.  Recall that studies 

suggest that delays of longer than 150 ms are perceptible to users [Muller et al. 2011].  

These delays are measured during an interactive process such as hitting a key on a 

 106 



 

keyboard.  Since the measured overhead is only 100 milliseconds per minute, protection 

of small processes (i.e. where each segment is only up to ~4 KB) is possible with very 

reasonable overhead costs.   

Note that PCB-stack and heap protection is more costly than code protection in all 

cases.  This is due to several factors—the PCB-stack/heap buffer must both be encrypted 

and decrypted while it is not necessary to re-encrypt code and there is additional 

bookkeeping work that must be accomplished with the PCB-stack area.  Additionally, 

code decryption takes advantage of the fact that the code is not needed until after the 

context switch routine returns.  Because of this, much of the decryption work can be 

overlapped with other context switch routine work.  For example, the measurement for 

code protection in a system with no caching is approximately 24,832 cycles.  However, 

by polling the EDU for completion before moving to the next instruction in the context 

switch routine, the average cycles without overlap can be determined (40,320).  

Overlapping produces a significant reduction in cycles (~38.4% or 15,488 cycles) and is 

a technique that is often espoused in computer architecture literature.  Unfortunately, 

there is only enough work within the context switch routine to cover the encryption 

overhead of one of the segments.  

Increased caching highlights the cost of protection as baseline performance is 

improved.  Additionally, the reduction in cycles necessary to carry out non-

encryption related work in the context switch routine breaks the overlapping 

technique discussed above (i.e. there are not enough cycles to cover decryption 

work).  Invalidation adds additional cycles and reduces the effectiveness of caching 

for code and data that is invalidated.  In spite of these issues, caching has an overall 
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positive effect on performance.  Invalidation is narrowly targeted to the process 

code and data, other code (e.g. kprintf, read only data, etc.) is still cached resulting in 

additional work being accomplished by each process during the same scheduling 

quantum. Each simple process executes a count that is printed to the screen.  As an 

example of the overall benefit of caching, the counts were collected after 1000 

context switches--with the L2 cache disabled counts of 20800000, 20600000, and 

20700000 were recorded whereas with the cache enabled counts were 28700000, 

28300000 and 28500000 for processes 1, 2, and 3 respectively.    

Page Allocation Benchmark 

As mentioned above, small processes only exhibit ME overhead during context 

switch.  However, if a processes code or heap is larger than a single page, additional 

overhead results from access during the scheduling quantum.  Stacks are typically 

defined at a certain maximum size and so are not considered in this benchmark.  For 

example, in the Android operating system, stacks are commonly defined to be no larger 

than 4 or 8 KB [Bartel et al. 2012].  The benchmark can be run for any number of pages.  

Pages are first allocated and then written.  The average cycles for this part of the 

benchmark are recorded.  Next, all of the pages are read and again the average cycles are 

measured.  The same number of pages are first allocated, written and read unprotected 

and then with memory encryption enabled. 

Several important differences between the function of the unprotected and 

protected page allocation benchmark algorithms must be pointed out.  For the 

unprotected benchmark, pages are allocated in eRAM and then written in place. In order 

to create pages safely when protected they must be written in iRAM and then encrypted 
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to the allocated location in eRAM.  Similarly, when reading an unprotected page it is 

simply read in place whereas a protected page must be decrypted to an internal buffer 

before being read.    

The results from running the page allocation benchmark are presented in Table 4 

below.  Measurements were made at 100, 1000, and 10000 page allocations.  However, 

the differences in average cycles for each level were statistically insignificant and so the 

results are only shown for 1000 pages. 

Table 4. Page Allocation Benchmark Overhead 

 

Without caching, the unprotected allocation/writing takes, on average, 1,681,600 

cycles. Allocating and writing the same 4 KB page only takes approximately 1,437,446 

cycles when protected (encrypted).  This result is, at first, counterintuitive.  Recall the 

differences in how the writes are done under the two modes (i.e. in iRAM when protected 

or in place in eRAM).  Internal RAM (tighly coupled memory) has much faster access 

times than eRAM.  This coupled with the fact that the page encryption can be overlapped 

with the work of allocating the next page account for the reduction in overall cycles.  The 

average overhead for reading of encrypted pages is 6% wihout caching.  Again, while 

enabling the cache improves the performance of the protected page allocation benchmark 

significantly, it is dwarfed by the improvement in the unprotected mode resulting in 

overhead of 870%.  It is fairly clear that it is the decryption cycles that dominate the 

protected mode.  Those cycles are not able to be reduced via caching.  Note that it costs 
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approximately 91,000 cycles to decrypt a 4 KB object.  This is close to the result we 

obtain when subtracting the unencrypted read cycles from the encrypted ones (98,048-

10,112=~88,000).  For these experiments, reading did not begin until the entire page was 

decrypted.  It is possible to begin reading from the top of the page some time before the 

entire page is decrypted as reading each word takes time which would overlap with the 

additional decryption.  Writing is still faster for the protected mode by about 3%. 

These overhead measurements alone are not overly informative.  They must be 

analyzed in consideration of a particular usage model.  How many heap and/or code page 

reads does an average smartphone application make per second?  The average size of an 

application on an Android device was 6 MB in late 2012 [Tom’s hardware].  There are 

hard limits on the amount of heap space that can be allocated to each process similar to 

the limit on stack space.  Further, there is a well-known rule of thumb in computer 

architecture--programs tend to spend 90% of overall time executing just 10% of 

instructions [Hennessy and Patterson 2006].  Assuming 50% of the average 6 MB 

application size are instructions the system will spend 90% of execution time in just 10% 

of 3 MB or ~76 4 KB pages worth of instructions.  Data usage (stack, heap, static, etc.) 

varies depending on the type of application.  When we add that to the other 3 MB for data 

we have ~844 4 KB pages.  Accessing the average program at 100 pages per second 

would mean running through all of its data and highly used code in just 8.4 seconds.  

These assumptions are conservative and ignore the benefit of caching on the most highly 

accessed pages.  Additionally, the reduction of cycles for protected writing is not taken 

into consideration. 

Considering that each page read requires an additional ~87,936 cycles we have 
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8,793,600 cycles per second.  The system is running at 800 MHz, so this is roughly 

equivalent to 11 milliseconds of overhead per second or 0.66 seconds of overhead in a 

minute.  This equates to 1.1% overhead.  Increasing the access assumption to 1000 page 

reads per second (3.9 MB per second or about 66% the size of the average Android 

application per second) results in 11% overhead.  For average mobile application sizes 

and workloads exhibiting good locality the overhead for protection of all process 

segments is reasonable.  Recall that the context switch costs for protecting all 3 segments 

are 100 ms per minute.  Adding this into the overhead for larger processes that access 

additional code and data at 100 pages per second yields approximately 0.76 seconds of 

overhead per minute or ~1.3% overhead.      

Worst Case Exploration       

The context switch and page allocation microbenchmarks appropriately 

characterize the specific parts of the operating system where overhead is introduced.  The 

average or typical smartphone workload tends to exhibit good locality and this is taken 

into consideration when selecting the number of page reads required per second above 

[Gutierrez et al. 2011].  However, it is important to understand the conditions under 

which system performance may degrade to unacceptable levels. 

In order to approach the upper bound for worst-case ME performance, a radix-2, 

in-place fast Fourier transform (FFT) based on the Tukey-Cooley algorithm was 

implemented [Press et al. 1992]. This un-optimized version of FFT displays extremely 

poor temporal and spatial locality—memory accesses are pathological for the traditional 

memory hierarchy unless the entire data structure fits within the cache [Thomas and 

Yelick 2001].  The smallest block for decryption in AES is 16 Bytes. Since the data in 
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each component of the FFT (real and imaginary part) take up one word each (8 Bytes 

total), additional overhead is introduced in order to align the smaller data with the 

decryption algorithm requirements. Whereas the unprotected version implements a 

simple swap of two of the real and imaginary components in eRAM, the protected 

version must first determine the appropriate 16 Byte-aligned address to decrypt into the 

internal buffers for each component. Then the proper half of the 16 Bytes must be 

identified after which the swap is performed in iRAM, data re-encrypted and stored back 

to eRAM as shown in Figure 20.  

  

Figure 20:  Protected FFT Swap (left) and Normal FFT Swap (right) 

Recall that if all objects fit within the large iRAM buffer, the set of heap objects is 

decrypted there and used normally.  However, if the objects are too large, decryption of 

data on-demand at the size appropriate to the application (or smallest size possible) is 

used.  For completeness, both techniques are explored in this work.  Because there is no 

locality to exploit in the FFT exemplar we default to decryption on demand at the 16 Byte 

size as mentioned above.  Additionally, this requires modification of the code to add 

encryption and decryption calls to the process itself.  
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Table 5 shows the overhead of decryption of data in the FFT problem with 128 

KB arrays holding the real and imaginary data components. Recall that the cycles per bit 

cost of decryption is large at the 16 Byte size (~71.5). In summary, about 19 billion 

cycles were required to execute the unprotected FFT. Without caching, encrypting all 

data for the entire FFT operation requires approximately 18 billion additional cycles 

(37.6 billion cycles total): resulting in a slowdown of approximately 2 times over the 

unprotected execution and overhead cycles of 98%. As additional levels of caching are 

enabled a widening gap between the average cycles for unprotected and protected heap 

objects emerges.  With full caching of data and instructions, the slowdown is about 2.8 

times with 185% overhead.  For the FFT code, the additional overhead is due to both the 

EDU decryption cycles and a significant amount of other work required to correctly 

identify, decrypt and swap FFT components as discussed above.   

Table 5. Overhead for FFT of 128 KB Heap Data Object 

Security State of 

FFT Data 

Structure 

(128KB) 

Average Cycles 

without Cache 
Average Cycles 

Instruction 

Caching Enabled 

Average Cycles 

Instruction/Data 

Caching & MMU 

Enabled 

Overhead w/o 

Cache 
Overhead 

Instruction 

Caching 

Overhead 

Instr/Data 

Caching & 

MMU 

Unprotected 18,958,489,984 7,849,799,296 916,376,832 N/A N/A N/A 

Protected 37,626,951,104 20,883,119,680 2,607,492,810 98 %   (~2X) 166 % 

   (~2.7X) 

185 % 

(~2.8X) 

 

While the overhead for the un-optimized FFT with large data structure is 

significant, for smaller heap objects that are able to fit within iRAM, the cost of 

protection is quite reasonable--similar to the SEP case with the cost of one decryption for 

the heap object.  Even in cases where the data structure is too large to fit into iRAM, 

mapping the FFT problem to the underlying memory hierarchy to improve performance 
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is an open area of research [Thomas and Yelick 1999; Aboleaze and Elnaggar 2006].  

One such technique involves breaking a large FFT data structure into multiple sub-

structures that are able to fit within cache and executing the algorithm on those sub-

structures.   

Table 6 below details the results of multiple runs of the FFT algorithm using a 16 

KB data structure.  The entire 16 KB data structure is decrypted to an iRAM buffer 

before executing the FFT.  The results at first seem counterintuitive—for the first two 

cases (no caching and instruction caching) the average number of cycles for the 

encrypted FFT are actually less than in the unprotected case.  Recall that decrypting a 16 

KB chunk is extremely efficient compared to decrypting smaller sizes (e.g. 16 B).  

Additionally, unlike the PCB-stack case, there is very little additional bookkeeping 

necessary with a heap object.  In fact, the only changes required were the addition of an 

EDU call at the beginning of the FFT and a change of address from the eRAM heap 

object to the iRAM buffer.  However, this still does not account for the protected cases 

having fewer average cycles.  This can be explained by the fact that iRAM has much 

faster access time than eRAM (where the heap object is accessed in the unprotected 

case).   

Table 6. Overhead for FFT of 16 KB Heap Data Object – iRAM Buffer 

Security State of 

FFT Data 

Structure (16 KB) 

Average Cycles 

without Cache 
Average Cycles 

Instruction 

Caching Enabled 

Average Cycles 

Instruction/Data 

Caching & MMU 

Enabled 

Overhead w/o 

Cache 
Overhead 

Instruction 

Caching 

Overhead 

Instr/Data 

Caching & 

MMU 

Unprotected 2,097,284,928 812,444,992 76,247,232 N/A N/A N/A 

Protected 1,968,859,072 791,610,688 81,605,376 No Overhead No Overhead 7 % 
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The combination of an efficient chunk size, few bookkeeping instructions and the 

faster access results in fewer overall cycles.  Another trend demonstrated by the data is 

the decreasing difference between the average cycles measured with increasing levels of 

cache utilization—leading to a crossover condition such that the protected case for 

instruction and data caching requires more cycles than the unprotected case.  This can be 

explained by the fact that the cache exhibits even faster access time than iRAM (e.g. 1 

cycle for L1 cache).  These results are very promising for heap object protection when 

objects fit within the available internal space.   

While the FFT was considered in this work due to its low level of locality, in 

reality, most mobile processor packages include single-instruction multiple data (SIMD) 

cores, such as the NEON processor to optimize algorithms like the FFT. Further, mobile 

system use tends to be characterized by interactive applications such as chat, e-mail, and 

those displaying spatial/temporal locality (e.g. photo viewing) [Gutierrez et al. 2011].   

5.4 Dynamic Encrypted Processes (DEP) – Conclusion 

The methods used in the literature for determining performance include 

mathematical model, simulation, kernel prototypes and FPGA prototypes with various 

benchmarking suites used in the latter three.  Simulation is performed with (in order of 

decreasing usage) SimpleScalar, Simics, SESC, GEMS, SOC designer, RSIM, and M5.  

A group of the simulations utilize SimpleScalar and [Duc and Keyell 2006] note that this 

simulator neglects the impact of the operating system and other running processes.  

Besides these limitations, some authors admit a lack of model fidelity with significant 

differences between systems modeled and those targeted.  For example, in [Chen et al. 

2008] an x86 architecture is modeled since it happens to be better supported by the 
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simulation tool (Simics) even though the scheme is actually targeted at embedded-ARM 

systems. Unfortunately, even if a system under test were to be modeled perfectly, the 

simulation tools themselves have been shown to sometimes exhibit behavior unlike real 

systems.  In [Muller et al. 2011], the behavior of CPU registers is interrogated under 

simulation in QEMU with the contents surviving soft-boot.  This behavior would 

circumvent the protections afforded in that work, however, real hardware behaves 

differently and zeroes out the registers. 

The range of overheads reported in the literature is quite large (1% to 6015%).  

The results on the lower end of the spectrum are possibly overly optimistic given the lack 

of fidelity in the simulation frameworks and the lack of standards for comparison.  If 

standardization could be injected into the validation methodologies through common 

AES decryption latency, benchmarks etc. it would enable more meaningful comparative 

analyses.  Even with standardization, the number of assumptions make it difficult to be 

confident that simulation will provide anything more than high-level information: It 

ignores the more difficult and interesting implementation issues and associated security 

impact based on vulnerability and exploit analysis.  Where, in the few cases available, the 

literature addresses these low-level issues, it tends to be with generalization since there is 

no chance for practical experimentation or empirical evidence [Lie et al. 2000; Shi et al. 

2004; Chhabra et al. 2010]. While the security of the encryption algorithm or cipher 

mode is often pointed out, it is commonly the complexity of the system in which these 

algorithms run that presents vulnerabilities.  The most developed, though not 

commercially available, general-purpose technologies are FPGA soft-core emulations 

[Suh et al. 2007] and the Linux prototype used in Cryptkeeper [Peterson 2010].  While 
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the industrial devices are mature and practical, they are not general purpose, catering to 

highly specialized operations. 

Various approaches are used in the literature for measuring overhead ranging 

from worst case through average case to best case with the preponderance of work 

measuring the latter.  It is important to understand the performance characteristics of the 

average and worst-case (on demand decryption) scenarios where decryption overhead is 

added directly to memory access time. In this work, it was anticipated that performing 

memory encryption without the benefit of the MMU and cache (including prefetching 

etc.) would yield excessively large overheads.  In reality, while using caching improved 

the overall performance of the ME system it was dwarfed by the improvements to the 

unprotected system as the overhead of the EDU decryption itself could not be mitigated.  

In other words, while the number of cycles for the protected system with caching was 

much improved over the system without caching, the overhead when compared to the 

unprotected system was much higher.  

While PCB-stack and code protection added significantly to the average cycles of 

the context switch, the overall system slowdown would be just 0.6 seconds after an hour 

of execution.  For the majority of smartphone applications (displaying good locality) the 

page allocation and context switching benchmarks appropriately capture the cumulative 

overhead which is low at ~1.3%.  It is only in pathological cases, where there is little to 

no locality, that the overhead grows significantly.  The results of on-demand decryption 

for heap objects were fairly onerous at 2x-2.8x the unprotected case.  However, the 

slowdown for the FFT is better than that reported in the simulation results of a similar 

technique that took advantage of caching mechanisms but lacked encryption hardware.   
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In that work, slowdowns of 2.53x and 8.5x were measured when utilizing a 4 KB page 

with a 256 KB and 64 KB L2 cache respectively [Chen et al. 2008]. Where the heap 

object fits into iRAM, the faster access time resulted in fewer cycles in the case of no 

caching and instruction caching and only 7% overhead with full caching.  Further, there 

are techniques for breaking large data structures down to fit within the underlying cache 

(and iRAM) architecture meaning that simple optimization techniques can significantly 

improve the overhead of worst-case applications.  These results suggest that ME is a 

feasible technique today given the commoditization of security hardware.   
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Chapter 6: Mutually Distrusting Processes and Measuring Protection  

The previous chapters have considered protection of a system against hardware-

based attacks (e.g. bus snooping, injecting, cold boot, etc.) and against some types of 

malicious code (e.g. worm or Trojan horse dropped on the local system).  One of the 

assumptions of this type of model is that the user processes are trusted to some degree.  

They do not have access to the encryption key, but they share the same key with all other 

processes.  Unfortunately, the possibility of downloading a malicious application from an 

application store is quite high [Zhou et al. 2012].  This leads to the idea of mutually 

distrusting processes (MDP).  Mutually distrusting processes could be those 

downloaded from an application store such as those used for Android and even 

iPhone devices today. While Apple makes an effort to check all such applications, 

several applications have been included in the application store having malicious 

characteristics. Although these have been removed from the store (when identified), 

the damage had likely already been done (e.g. loss of users’ private information).  

 6.1 Mutually Distrusting Processes 

The inherent trust placed in processes running at the same level in an 

operating system is often misplaced.  Besides a user accidentally downloading a 

malicious application, another vector for infection involves a trusted insider 

purposely installing one.  Both Windows and Linux systems provide functions for 

reading the memory of other processes running on the system allowing for passive 

memory scanning attacks (i.e. stealing data) and active modification attacks where 

code is changed [Gutmann 2000].  One particular version of this attack is increasing 

in usage and has been dubbed a memory scraper virus when used against point of 
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sale (POS) systems to steal credit card information [Baker et al. 2008].  This issue 

may be countered to some degree by enforcing a constraint on a group of users to 

download applications only from a trusted app store.  One could imagine such a scenario, 

for example, with smartphones used in military operations.  Applications could be 

encrypted and signed at the trusted app store for delivery to devices in the field.  Those 

applications would then be decrypted with a key shared by a military unit, and re-

encrypted with the devices' unique key for use.  However, even under this model the 

potential for an insider attack still exists whereby malicious code could be inserted into a 

trusted application.   

One way to increase the security of each process is to encrypt it with a 

unique key (i.e. key scope:process).  In this way, a malicious process can not attempt 

to execute a known plaintext-known ciphertext attack on the key itself and, more 

importantly, can not use techniques to read other processes memory outside of 

strictly controlled channels.  Any attempt to do so through a break in normal control 

flow would lead to the victim processes code/data decrypting to garbage using the 

malicious processes key.  This technique also increases attacker workload for an 

attacker attempting to capture large amounts of RAM data for a brute force attack--

RAM would be broken up into sections encrypted with disparate keys. Based on this 

additional protection and the performance measurements below, this technique 

may be useful even for systems where all processes are trusted.   

Unfortunately, if processes are suspect, the problem of covert and side 

channels (e.g. timing, sharing cache, etc.) produced from sharing internal hardware 

must be addressed [Wang and Lee. 2004].  Since the IMX53 encryption engine maintains 
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its own memory for key expansion it is protected against the statistical timing attack on 

the encryption key.  However, as a byproduct of using the same iRAM buffers to hold the 

decrypted code and data (including heap objects) of each process, a direct channel is 

created.  If the code/data of a previous process is not sanitized the next process may be 

able to access it directly (assuming the next process is small enough to not overwrite the 

entire buffer).  For our iRAM buffers, this can be addressed simply by ensuring that we 

always decrypt the same number of bytes to overwrite the previous contents (even if the 

code/data required is smaller). This is especially necessary for the internal heap object 

buffer as processes are allowed to freely access that space while the iRAM code and 

PCB-stack buffers are somewhat constrained by normal control flow.  One technique 

to protect against these covert and side channels in cache is to simply disable it. Using 

multiple internal buffers (one per process constrained by the size of iRAM) could also 

mitigate the leakage of information.  For the cache, the requirement for invalidating and 

cleaning during context switching should help protect processes from covert and side 

channels. While these techniques do thwart the obvious side (direct) channels, we do not 

address subtle attacks such as cache timing, which are outside the scope of this work. 

Having an encryption key per process that is strictly under the control of the 

secure microkernel will help mitigate such attacks on the privacy of data and the 

control flow of other processes. The modifications required to the dynamic 

encrypted processes prototype were fairly straightforward. In order to facilitate 

MDP protection in our system, a key table was added to iRAM in order to store a 

per-process unique 128-bit AES key. At context switch time, the microkernel selects 

the appropriate key for encryption/decryption of each process.  Since the system 
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currently uses a round-robin scheduling algorithm the key is selected using the 

following code:  

nextkey=0xf8000040+(((currentp->pid + 1)%3)*16); 

Note that the key table is placed in iRAM at location 0xf8000040.  While a simple if 

statement would suffice in this situation (and with fewer cycles) the code above 

generalizes to any number of processes.  Depending on the type of scheduling used, and 

the number of processes (and thus size of the key table) a fast hash lookup could also be 

used. The measurements for MDP protection without cache or MMU are shown below in 

Table 7. 

Table 7. MDP Measurements 

 

 

 

 

 

 

Measurement of MDP protection was carried out in the same way as for previous 

prototypes—averaging the cycles for 1000 context switches of three processes. For 

comparison, the measurements for DEP protection are also provided.  The only additional 

overhead introduced during context switching is from the key lookup.  To verify this the 

performance monitors were used to measure the average cycles of the key lookup (~1920 

cycles).  Additionally, since each process uses its key throughout its scheduling quantum 

there is no additional overhead added to the page allocation benchmark.  

Component 

within Context 

Switch 

Average Cycles 

without Cache 

DEP 

Average Cycles 

without Cache 

MDP 

Overhead for 

MDP compared 

to DEP 

Unprotected 16384 16384 N/A 

PCB-Stack 50176 51096 1.8% 

Code 24832 25920 4.4% 

Heap 50100 51068 1.9% 
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6.2 Exploring Memory Encryption Protection (Confidentiality and Integrity)  

As espoused in the ME literature, understanding the overhead associated with 

memory encryption is extremely important in order to gauge its suitability for various 

users and situations.  Because of this, the work in previous chapters was devoted to 

understanding the intricacies of implementation and measuring the associated overhead 

for SEP, DEP and MDP.  However, an area quite lacking in the literature is a thorough 

examination of the security properties provided by memory encryption.  For the majority 

of work (as discussed further in Chapter 7) the main threat model includes the end user 

with the goal of protecting proprietary software and data from theft.  Some of the more 

recent work includes a model similar to that in this work—protection of the end user 

against malicious code and adversaries with physical access.  Regardless of the threat 

model, the security property highlighted in ME work is confidentiality of RAM.  This is 

the first work in ME to explore the additional integrity protections afforded by memory 

encryption. 

In the book Trusted Computing Platforms (2005), Smith identifies a 2X2 

taxonomy of goals for the trusted computing platform: confidentiality and integrity for 

code and/or data.  However, as in the work in the ME literature, it is assumed that 

confidentiality is provided by encryption and that integrity requires separate 

authentication mechanisms. The work in this thesis asserts that while integrity 

mechanisms do not necessarily provide confidentiality--encryption mechanisms 

(specifically used in memory encryption) do provide integrity protection of varying 

degrees for both code and data. 
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An attacker lacking the encryption key will be able to modify (inject) memory in 

various ways but will inject plaintext code or data.  That code or data will be decrypted 

into random “garbage” in iRAM and scheduled for execution (code).  The fetch-decode-

execute hardware itself acts as an integrity engine for code segments, producing 

exceptions to identify modification.  While data does not necessarily have a method for 

quickly identifying modification, changing it in a predictable way is difficult.  Further, 

since memory is encrypted identifying the location of code and data to change is difficult.  

Additional information can be gleaned from memory access patterns over time and 

protecting against this subset of pattern analysis is the subject of research as well as 

various techniques implemented in industrial applications.  For example, the Dallas 

Semiconductor 5002FP secure processor encrypts memory addresses to prevent traffic 

analysis on the memory bus and uses spare processor cycles to place dummy memory 

accesses on the bus [Gao et al. 2006]. 

Analytically, the strength of the protection afforded by an encryption algorithm is 

described as a function of the block size.  For example, if we are using a decryption size 

of 16 bytes, the strength against a brute force attack is 2^128.  Unfortunately, this 

theoretical strength is often reduced due to the side-channel leakage of information on 

practical implementations (i.e. the intricacies of implementation).  For example, it has 

been shown that ME processors can be compromised via what has been titled a cipher-

instruction search attack [Kuhn 98]. In such an attack, the output busses from the main 

CPU are used as a form of side-channel to gather information while random “guesses” 

are placed in encrypted memory, decrypted and executed via system restart.  In this way, 
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the author is able to eventually build a small program to cause the system to write out the 

internally protected contents.  The system attacked used a small block size of 8 bits, 

making the attack quite feasible with very little cost and time.  For the system described 

in this work, the smallest possible block size is 16 bytes.  The size of an ARM instruction 

is 4 bytes.  If we consider a similar attack where the attacker was trying to find an 

instruction in the first word of a 16 byte sequence the brute force space is actually 

reduced from 2^128 to 2^128-2^96 because there are 2^96 inputs for the 16 bytes that 

will produce the correct output for the first word.  This means if we have attempted 

2^128-2^96 random values without success, the next value must be one that will produce 

the correct output for the first word.  While it is important to consider this type of attack 

since it has been perpetuated against an actual ME architecture, a brute force attack is still 

infeasible since the space is essentially still 2^128.      

Because of the nature of most of the memory encryption work in the literature 

(simulations) there is very little information regarding the actual security enhancements.  

Only one of the papers surveyed mentioned the possibility of protection against remote 

code injection attacks via a reference to another work that highlighted protection against 

buffer overflow attacks in the instruction set randomization (ISR) area.  However, after 

thorough consideration and analysis of several of the ISR techniques it was determined 

that protection against buffer overflow is not a practical goal of this work.  This is 

because the smallest key-scope granularity considered for this work is per-process. Any 

information entered into a buffer (legitimate or not) would either be decrypted by the 

valid key or entered when the buffer is resident in iRAM in unencrypted form.  The way 

that encryption (or randomization) has been explored to protect against such buffer 
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overflows is to narrow the key-scope all the way down to the return pointer.  Since the 

rest of the stack does not share the same key (or indeed may be unencrypted), any 

plaintext address written over the pointer will result in an exception as it is randomized 

(decrypted).  

Experimentation was undertaken to provide evidence supporting the claim of 

confidentiality and especially integrity protection of code and data.  In order to test 

whether our system protected the confidentiality of eRAM, system execution was halted 

with both code and PCB/stack protection enabled.  An examination of eRAM via the 

JTAG-TAP revealed no evidence of any plaintext information.  Besides searching the 

specific address ranges where code and data was known to reside, large sections of 

memory were exported for analysis via a strings function.  While this was a 

straightforward exercise, it was important to verify that the system was protecting eRAM 

as advertised. 

In order to empirically test protection against code injection, the ARM exception 

vectors had to be modified.  In a fully developed system, the exception vectors would be 

used to halt execution of the offending process.  Additionally, the technique could be 

used to signal process resurrection or selection of a copy already running and encrypted 

with a new random key to enable resilience [McGill and Taylor 2011].  The offending 

memory location (and some range of memory surrounding it) could also be captured for 

forensics analysis to determine if there was an attack or simply an error.  The default 

exception vectors in ARM include Reset, Undefined Instruction, Supervisor Call, 

Prefetch Abort, and Data Abort.  The prefetch and data aborts indicate invalid memory 

locations for instructions and data respectively.  The exception code was modified to 
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count the number and type of exception and number of instructions executed before 

exception.  Additionally, the code restored the processes stack and program status register 

value (resetting the test), randomized the encryption key via the SAHARA random 

number generator (RNG), re-randomized the original plaintext code with the new key and 

reset the program counter to the original instruction.  Valid plaintext code was placed in 

an internal buffer before being ‘decrypted’ and executed.  Once an exception occurred, 

the tests continued in an automated fashion (see Figure 21). 

Occasionally, the test would become stuck in an infinite loop somewhere in 

memory.  For example, the PC was updated to point to the middle of a counting loop but 

the counting variable had not been set up properly (which would happen under normal 

control flow).   While this is not the desired behavior, it would be possible to check the 

progress of a process after some given time after the expiration of which the process 

could be killed.  Additionally, a system with the MMU and paging enabled could prevent 

such accesses.  An additional error that was occasionally observed was the “illegal 

system call” that is not one of the defined ARM exceptions.  It was originally thought 

that this was an error code from one of the system’s coprocessors.  However, it was later 

identified as one of Bear’s error codes.  Some of the random executions would invoke the 

‘Supervisor Call’, which is the way Bear executes calls for process creation etc.  While 

the random code was able to execute a supervisor call (very infrequently), the additional 

information required for a valid call was never correctly provided (the probability of that 

happening is statistically insignificant) [Barrantes et al. 2003].  There was also an issue 

with imprecise exceptions where an exception is thrown several instructions after it 

actually occurs (often in the middle of another exception in our attack testing scenario).  
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Setting a bit in the program status register that disabled all imprecise exceptions rectified 

this situation.   

          

Figure 21: Small Section of Exception Output from Code Injection Testing 

The code injection testing was successful and provided evidence of the integrity 

protections afforded by memory encryption.  On average, about 300 exceptions occurred 

before an infinite loop.  The infinite loops never executed anything useful.  The average 

exception profile was 132 Unknown Instructions, 23 Prefetch Aborts, 123 Data Aborts, 

and 22 Illegal Supervisor Calls.  For additional clarity, the Eclipse disassembly preview 

of the same section of code before and after scrambling by decryption is shown in Figure 

22.   
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Figure 22: Process 1 After Scrambling via Decryption (left) and Original Plaintext (right) 

Instruction set randomization (ISR) work is closely related to this particular 

aspect of memory encryption.  The goal of ISR is to prevent the execution of remotely 

injected code.  This is usually done by rewriting a binary with varying encryption 

schemes (e.g. XOR to AES) and decrypting the instructions to a buffer that rests in the 

same external memory.  This technique provides no confidentiality protections to code 

since all of the code is available at some point in time and vulnerable to the various 

attacks described earlier in this work (e.g. bus probing and injecting).  Additionally, the 

ISR work only targets the protection of code, not data.  In one of the earliest works on 

ISR, Barrantes et al. run a similar test of their ISR system to determine the number and 

types of exceptions encountered on an x86 system.  For comparison, the results of that 

testing is shown below in table 8. 
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Table 8: Results of ISR Testing 

Outcome Percent Cumulative 

SIGSEGV (illegal mem 

access) 

 84%  84% 

SIGILL (illegal instruction)  15%  99% 

SIGFPE (divison error)  0.6%  99.6% 

SIGBUS (illegal memory 

alignment) 

 0.3  99.9% 

LOOP  0.1% 100% 

 

While the tests on both platforms demonstrate the effectiveness of randomization 

against injection attack, the ratios of types of exceptions are markedly different.  For 

example, a large percentage (84%) of exceptions in the x86 work are attributed to illegal 

memory accesses as compared to about half (49%) of the exceptions on the ARM 

architecture (combining prefetch and data aborts).  This is likely because the tests on the 

x86 system were carried out with paging enabled.  This means that memory that does not 

belong to the current process caused a SIGSEGV exception as well as completely invalid 

memory addresses (the latter being the only accesses which cause prefetch and data 

aborts in this work since paging has not been implemented).  Additionally, the ratio of 

illegal instructions in the ARM compared to x86 is about 3:1.  ARM instructions are of 

fairly fixed lengths (ARM 4 bytes, Thumb 2 bytes) whereas x86 instructions are of 

variable length (1 byte to 16 bytes).  The additional constraints on ARM code likely 

results in more exceptions. 

6.3 Summary 

This chapter has explored an extension of the basic ME prototype to protect 

mutually distrusting processes by encrypting each process with its own unique 128-bit 
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AES key.  Additionally, the confidentiality and integrity protections afforded by ME 

were explored and measured.  For very few additional cycles (~1920), mutually 

distrusting processes can be made more secure.  AES is secure against known-plaintext 

attacks, but even if a process could somehow successfully brute force the key, it would 

reveal nothing about the other processes' keys.  Additionally, if the malicious process 

were to try and access the memory of victim processes outside of the normal flow control 

(including access control) of the system it would be unable to decipher any data.  Besides 

protecting the processes from each other, this increase in the number of keys used to 

encrypt RAM as a whole should further complicate brute force attacks—increasing 

attacker workload.  

In the ME literature, the goal of ME is to provide confidentiality of code and data.  

This is the first work in the genre to identify the additional integrity protections afforded 

to both code and data.  Exploration of integrity protection via randomization of code 

under a changing key demonstrates the effectiveness of the approach.  While there is a 

small chance of an attack executing pre-existing code in the system, the chance of that 

code benefitting an attacker is even smaller [Barrantes et al. 2004].  This is especially 

true considering the experiments above were designed to rapidly test newly randomized 

code.  Under normal conditions the attacked process would be killed and a new process, 

randomized under a different key (and likely in a different part of memory) instantiated.  

This process throttles code injection attacks—it takes some amount of cycles/time to 

accomplish and also forces an attacker to spend additional time to target the new location 

in memory.       
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Chapter 7: Future Work and Conclusions 

While this work has demonstrated that memory encryption is now viable because 

of the commoditization of security hardware, there are many more questions to be 

answered and improvements that could be made.  The emphasis in this work has focused 

on developing and measuring the basic mechanisms for ME with a range of architectural 

support (i.e. no cache through full cache and MMU support).  Measurement in the ME 

literature varies but the most common measurements are of the average or best case 

workloads with very few reporting worst case scenarios.  By approaching the upper 

bound on overhead via implementing on demand decryption it is easy to reason about the 

likelihood of these techniques being used.  There are many approaches that can be used to 

improve the performance of these prototypes. 

7.1 Future Work 

The first and most straightforward technique has already been explored to some 

degree in this work—overlapping.  It was shown how overlapping the decryption work 

with other work in the context switch routine saved about 10,000 cycles per context 

switch.  Enabling the cache had an overall beneficial effect on the average number of 

cycles but broke the overlapping technique since most of the switching code was cached 

(and therefore reduced in cycles).  However, a more effective way to use overlapping 

would be to overlap complete processes.  At the beginning of context switching, two 

processes would be decrypted into two separate sets of internal buffers with a third set 

remaining empty.  As encryption tasks can be queued, at context switch time, the 

outgoing process would be added to the queue to be encrypted to eRAM, the next process 

would be added to the queue for decryption into the empty set of buffers. Finally, control 
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would pass to the decrypted process for execution.  In this way, nearly all of the 

encryption overhead for context switching should be hidden.  To increase the size of 

segments and the number of processes that could be overlapped in this way, the use of 

other internal storage areas (e.g. 256 KB video buffer in iRAM) in combination with 

iRAM should also be explored.  Basic experimentation with this additional storage 

demonstrated that it can be used as easily as iRAM. 

Another area to be explored is paging.  Recall that the measurements of overhead 

for decryption showed the most efficient decryption sizes were 4 KB and above.  

Exploration should consider both the performance of crypto-paging and the implications 

on security.  For example, would encryption simply be an on or off decision?  Sampling 

or tracing particular applications to determine the level of locality exhibited could be 

used for the dynamic selection of even larger page sizes ( > 4KB) which should improve 

overall system performance. 

While most of the work of this thesis has concentrated on implementation, there is 

ample room for developing policy for its use.  The granularity of process segment allows 

for a graduated response to protection that could balance currently known threats/goals 

(e.g. military infocon levels) with associated overhead costs.  For example, even if areas 

prone to having sensitive information are not identified, developers working in a trusted 

application store can be advised to target specific kinds of storage for sensitive 

information (e.g. the stack).  Further, policies may be developed to link the mode of ME 

(e.g. PCB-stack, heap, code) to the goal of the protection.  For example, digital rights 

management (DRM) is concerned with the protection of code and so may only require 

code encryption.  An analysis of the overheads involved and types of protection provided 

 133 



 

at various levels of granularity may lead to an optimization of the techniques as expressed 

in usage policy.  

  Another area that should be examined with regard to policy is when to use ME.  

For example, if a smart phone has not had its screen locked, there is little need (or 

likelihood) for an adversary with physical access to attempt a physical memory attack as 

they likely already have access to anything on the phone.  It is worth considering whether 

a better model for application of ME would be to encrypt eRAM as soon as the phone 

locks.  This idea would also work for x86 systems.  For example, recall one of the attacks 

against a windows system that was at the login screen whereby an iPod was attached that 

searched through memory and overwrote the password checking routine with NOPs.  If 

that system were to encrypt its RAM as soon as it locked, then this attack would be 

mitigated.  Additionally, this usage model reduces any noticeable overhead for the user.  

The best solution for protection and usability may come from the proper combination of 

performance enhancing techniques (e.g. overlapping) and policy.  It should be noted that 

while this policy would protect against many of the hardware based attacks highlighted in 

this work it would not provide protection against malicious code (e.g. worms dropping 

executables on a running system) or mutually distrusting processes such as the RAM 

scrapers described earlier. 

Once paging is developed for the ME system, the next major project to consider is 

virtualization.  While the Cortex A8 does not include virtualization hardware, there are 

other techniques for implementing virtualization (although slower).  Further, porting the 

current system to the A15 architecture, which does include hardware for virtualization 

support, should not prove too difficult.  The Bear microkernel has also been developed as 
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a micro-hypervisor upon which the Bear microkernel and BSD can boot.  The memory 

encryption techniques explored in this work should be built into a hypervisor that will run 

on the ARM A15 architecture.  Once accomplished, the next step is to enable booting of 

the Android OS on the hypervisor.  In this way, ME protection can be provided 

transparently for Android and all applications running on top of it.  Alternatively, the 

Android dalvik virtual machine (DVM) could be modified to add ME techniques.  

Approaching a robust system will require attention to the other parts of a trusted 

system.  For example, Android’s file encryption method should be integrated with the 

ME technique.  Automated file encryption is already available in Android and makes use 

of on the fly decryption for every read/write operation on the block device [Skillen et al. 

2013].  A fully protected system must make use of both FDE and ME as well as trusted 

boot mechanisms as discussed in the assumptions and limitations of this work. 

Software encryption techniques should be ported and/or developed for the A8 and 

the performance measured for the same range of experiments used in the hardware tests.  

For example, the networking and cryptography library (NaCl) suite has been modified to 

work with ARM NEON hardware at surprisingly fast speeds [Bernstein and Schwabe 

2012].  NEON is a single instruction multiple data (SIMD) processor often used for 

vector operations such as video encoding.  NEON is much more ubiquitous in various 

ARM processors than the proprietary EDU used in this work increasing the likelihood of 

adoption of techniques developed with it.  However, it is unclear whether code and data 

would be protected everywhere outside of the processor when utilizing the NEON 

engine.   
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7.2 Conclusions 

This thesis proposed to solve the problem of increasing attacks on data in use in 

memory (e.g. cold boot attacks, memory scraper viruses, bus snooping and injecting, etc.) 

which has been exacerbated by the growing size of memory, changing usage models 

which invalidate old assumptions of volatility and increasing adoption of FDE.  In order 

to mitigate this problem, the idea of increasing the artificial diversity of RAM in order to 

increase attacker workload to the point where the costs of attack outweigh the benefits 

via memory encryption was explored.  In this way, commercial systems can be protected 

since criminals typically target the most vulnerable systems.  Further, time sensitive 

information such as that used in military operations would not be available to attackers 

until after its useful life (e.g. after a mission is complete).  

While there have been three decades of research into memory encryption, that 

research has focused primarily on the design of the ideal monolithic processor with a 

hardware engine integrated into the fetch-decode-execute gateway.  Other, more recent 

research has focused on software only approaches but these have proven too costly in 

overhead.  However, recently there has been a commoditization of security hardware into 

processors such as the Intel AES-NI and various ARM architectures.  The hypothesis in 

this work was that memory encryption could now be implemented with acceptable 

overheads using this nascent security hardware.   

A collection of novel memory encryption techniques was developed--providing 

synthetic diversity and increasing attacker workload. The hypothesis was explored 

through various prototypes from static encrypted processes (SEP) and through dynamic 

and mutually distrusting processes. SEP sought to introduce synthetic diversity into 
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memory to protect microcontrollers and other real-time processors commonly used in 

industrial control systems (e.g. lacking a memory management unit and little to no cache) 

via a one-time decryption into internally protected space.  This technique produced very 

little overhead. DEP sought to introduce synthetic diversity into memory to protect smart 

phone and other mobile computing devices characterized by multitasking operating 

systems including memory management units and cache.  For the first time in the ME 

literature, implementation on commodity hardware enabled exploration of protection at 

process segment granularity.  Protection of code and the PCB-stack data was transparent 

to processes (and developers) and the overhead was quite modest since that overhead was 

only experienced at context switch time (approximately 200 times per minute).  

Protection of heap objects is transparent for objects that fit into iRAM.  However, for 

large structures that do not display temporal/spatial locality changes were required to 

application code and the protection was more expensive. Still, the results were better than 

those in the literature.  Further, heap objects that fit into iRAM demonstrated better 

performance than unprotected versions since iRAM has shorter access times than eRAM.  

Finally, the DEP approach was extended to protect mutually distrusting processes (MDP) 

from each other via an increase in key granularity (i.e. a unique key per process) resulting 

in a very modest (~1900 cycles) increase in overhead. 

These techniques protect against software and hardware based confidentiality and 

integrity attacks and are portable to currently deployed general-purpose, security-

enhanced processors.  An analytical framework was presented to include performance 

benchmarks and analyses on the overhead of memory encryption at process segment 

granularity.  This work is the first in the genre to identify and explore the integrity 
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protections afforded by ME.  The problem of self-modifying code associated with 

memory hierarchy interaction in a memory encryption system was introduced and 

explored.  Finally, memory encryption techniques were explored through a comparative 

analysis of three decades of research and proposed solutions.  Widely varying 

assumptions and experimental conditions were controlled to provide a basis for 

comparison of that research. 

These systems and techniques have been demonstrated in proof-of-concept 

implementations and exemplars.  Memory encryption has been implemented to provide 

automatic and transparent protection for applications. This transparency is achieved 

through extension of a secure microkernel that was ported to an ARM Cortex A8 

processor.  The techniques have been implemented as modifications to linker scripts, 

initialization, process creation and context switching routines as well as new modules for 

interfacing with the encryption decryption unit (EDU).  These techniques have been 

demonstrated by encrypting processes while they reside in external RAM (eRAM) 

thereby adding synthetic diversity.  The implementations cover a range from an 

unsophisticated processor with no memory management unit (MMU) and cache to one 

with an MMU and 192 KB of L1/L2 cache.  Additionally, various granularities of 

protection are explored.  Finally, exception-handling routines have been developed and 

experiments executed to understand the protections afforded against code and data 

injection.  The low overhead results for typical workloads (~1.3%) and ability to easily 

optimize even the worst-case examples to ~7% overhead indicate that memory 

encryption is viable today on security-enhanced commodity processors.  
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Appendix 1: Python Code for Board Initialization and Bootloader Bypass 
 
#/******************************************************************************* 
#* 
#*   
#* Michael Henson - Python Push 
#* This script is a modification of PYSERIAL serial interface tool. 
#* http://pyserial.sourceforge.net 
#*   This script will initialize memory (and other peripherals if desired) 
#*   and then load an image file to the location specified in memory jumping 
#*   to the execution point specified in the image vector table (IVT). 
#* 
#*   usage:  python SERV.py write_file 0x70000000 iMXBlinky.img 
#*   where 0x70000000 is the starting location in memory to place the image 
#*   and iMXBlinky.img is the name of the image to load...could use *.img 
#* Placing the command in the post-processing section of the makefile after 
#* the image has been built will automate push  
#* NOTE: Must swap the IVT_BASE and BOOT_DATA_BASE locations in the LD file 
#* in order for the image to be in the proper format for loading to memory  
#*******************************************************************************/ 
 
import serial 
import time 
import os.path 
import sys 
 
# resp_var[4:] extract from element 4 up to the end of the list 
# resp_var[4:6] extract elements 5 to 6 
# resp_var[:-5:-1] extract the last four elements and parse starting from the end. 
 
 
# function to send the command on port COM 
# default response size is 4 bytes if none are specified 
def runcmd(cmd,responselength=4): 
 
 cmds = cmd.split() 
 if len(cmds) != 16: 
  print "Command format is incorrect!" 
  return 'error' 
 cmdstring = '' 
 for cmd in cmds: 
  cmdstring += chr(int(cmd,16)) 
 
 uart_port.write(cmdstring) 
# time.sleep(1) 
 resp_var = uart_port.read(responselength) 
 return resp_var 
 
# function to retrieve and print the response on the COM port 
def showanswer(resp_var): 
 # print as a 32-bit word 
 if len(resp_var)==4: 
  # resp_var[::-1] parsed the list starting from the end 
  for c in resp_var[::-1]: 
   print "%02X" % ord(c), 
  print 
 else: 
 # print in byte view  
  print "Byte view:" 
  for c in resp_var: 
   print "%02X" % ord(c), 
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  print 
 
# function to write the received data to a file 
def writetofile(resp_var, o_file): 
 # print as a 32-bit word 
 if len(resp_var)==4: 
  # resp_var[::-1] parsed the list starting from the end 
  for c in resp_var[::-1]: 
   print >> o_file,"%02X" % ord(c), 
  print 
 else: 
 # print in byte view  
  for c in resp_var: 
   print >> o_file,"%02X" % ord(c),"\n", 
  print 
 
# function to read data from serial port 
def get_serial_data(length): 
 # to do a loop with length larger than 4 
 resp_var = uart_port.read(length) 
 return resp_var 
 
# function to get the file size formatted to be sent by the serial port 
def get_formated_hex(var): 
 # create a list of the split hex version of the 32-bit integer 
 # if integer is 0x12345678 => ['1','2','3','4','5','6','7','8'] 
 if type(var) == long: 
  hex_list = list("%08X" % var) 
 if type(var) == int: 
  hex_list = list("%08X" % var) 
 if type(var) == str: 
  # in case the address is not 4bytes long => add '0's 
  var_size = len(var) 
  if var_size!=8: 
   for i in range(8-var_size): 
    var = "".join(['0',var]) 
  hex_list = list(var) 
 # create bytes from 2 elements 
 byte1 = "".join(hex_list[0:2]) # ['12'] 
 byte2 = "".join(hex_list[2:4]) # ['34'] 
 byte3 = "".join(hex_list[4:6]) # ['56'] 
 byte4 = "".join(hex_list[6:8]) # ['78'] 
 hex_fmt = " ".join([byte1,byte2,byte3,byte4]) #  # ['12 34 56 78'] 
 return hex_fmt 
 
#### list of commands #### 
#Reference i.MX53 Multimedia Applications Processor Reference Manual section 7.8 
GET_STATUS = '05 05' 
READ_MEMORY = '01 01' 
WRITE_MEMORY = '02 02' 
WRITE_FILE = '04 04' 
UNK = '06 06' 
 
#### acknowledge #### 
ACK_PROD = "".join([chr(18),'4','4',chr(18)]) # <=> '12 34 34 12' 
ACK_ENG = 'VxxV' # <=> '56 78 78 56' 
 
#### data size #### 
WORD_SIZE = '20' 
HWORD_SIZE = '10' 
BYTE_SIZE = '08' 
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#### file type #### 
DCD_TYPE = 'EE' 
CSF_TYPE = 'CC' 
APPS_TYPE = 'AA' 
 
############ main ############### 
def main(): 
 global uart_port 
 global tx_data 
 
 # if nothing is specified, display usage message ! 
 if len(sys.argv) == 1: 
  print "usage error" 
 
 # Start the program 
 if os.path.exists("/dev/ttyUSB0"): 
  # for Cygwin or Linux Python 
  uart_port = serial.Serial('/dev/ttyUSB0', 115200, timeout=2) 
 else: # for Windows Python console 
  uart_port = serial.Serial('COM1', 115200, timeout=2) 
 
 no_valid_arg = 0 
 #### get status command #### 
 cmd_to_send = " ".join([GET_STATUS,'00 00 00 00 00 00 00 00 00 00 00 00 00 00']) 
 answer = runcmd(cmd_to_send) 
 print 'Status is:' 
 showanswer(answer) 
 
 #### initialize memory for QSB DDR3 #### 
  
 access_size = WORD_SIZE 
 
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fd 40 68',access_size,'00 00 00 00','ff ff ff ff','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fd 40 6c',access_size,'00 00 00 00','ff ff ff ff','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fd 40 70',access_size,'00 00 00 00','ff ff ff ff','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fd 40 74',access_size,'00 00 00 00','ff ff ff ff','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fd 40 78',access_size,'00 00 00 00','ff ff ff ff','00']) 
 answer = runcmd(cmd_to_send) 
 
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fd 40 7c',access_size,'00 00 00 00','ff ff ff ff','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fd 40 80',access_size,'00 00 00 00','ff ff ff ff','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fd 40 84',access_size,'00 00 00 00','ff ff ff ff','00']) 
 answer = runcmd(cmd_to_send) 
  
 cmd_to_send = '02 02 53 fa 86 f4 20 00 00 00 00 00 00 00 00 00' 
 answer = runcmd(cmd_to_send) 
 cmd_to_send = '02 02 53 fa 87 14 20 00 00 00 00 00 00 00 00 00' 
 answer = runcmd(cmd_to_send) 
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 86 fc',access_size,'00 00 00 00','00 00 00 00','00']) 
 answer = runcmd(cmd_to_send) 
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 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 87 24',access_size,'00 00 00 00','04 00 00 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 87 2c',access_size,'00 00 00 00','00 30 00 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 85 54',access_size,'00 00 00 00','00 30 00 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 85 58',access_size,'00 00 00 00','00 30 00 40','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 87 28',access_size,'00 00 00 00','00 30 00 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 85 60',access_size,'00 00 00 00','00 30 00 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 85 68',access_size,'00 00 00 00','00 30 00 40','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 87 1c',access_size,'00 00 00 00','00 30 00 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 85 94',access_size,'00 00 00 00','00 30 00 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 85 90',access_size,'00 00 00 00','00 30 00 40','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 87 18',access_size,'00 00 00 00','00 30 00 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 85 84',access_size,'00 00 00 00','00 30 00 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 85 7c',access_size,'00 00 00 00','00 30 00 40','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 85 78',access_size,'00 00 00 00','00 30 00 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 85 70',access_size,'00 00 00 00','00 30 00 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 85 74',access_size,'00 00 00 00','00 30 00 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 85 88',access_size,'00 00 00 00','00 30 00 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 86 f0',access_size,'00 00 00 00','00 30 00 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 87 20',access_size,'00 00 00 00','00 30 00 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 85 64',access_size,'00 00 00 00','00 30 00 40','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'53 fa 85 80',access_size,'00 00 00 00','00 30 00 40','00']) 
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 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 88',access_size,'00 00 00 00','32 38 35 35','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 90',access_size,'00 00 00 00','40 38 35 38','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 7c',access_size,'00 00 00 00','01 36 01 4d','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 80',access_size,'00 00 00 00','01 51 01 41','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 18',access_size,'00 00 00 00','00 01 17 40','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 00',access_size,'00 00 00 00','c3 19 00 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 0c',access_size,'00 00 00 00','55 59 52 e3','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 10',access_size,'00 00 00 00','b6 8e 8b 63','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 14',access_size,'00 00 00 00','01 ff 00 db','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 2c',access_size,'00 00 00 00','00 00 26 d2','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 30',access_size,'00 00 00 00','00 9f 0e 21','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 08',access_size,'00 00 00 00','12 27 30 30','00']) 
 answer = runcmd(cmd_to_send) 
    
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 04',access_size,'00 00 00 00','00 02 00 2d','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 1c',access_size,'00 00 00 00','00 00 80 32','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 1c',access_size,'00 00 00 00','00 00 80 33','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 1c',access_size,'00 00 00 00','00 02 80 31','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 1c',access_size,'00 00 00 00','09 20 80 b0','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 1c',access_size,'00 00 00 00','04 00 80 40','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 1c',access_size,'00 00 00 00','00 00 80 3a','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 1c',access_size,'00 00 00 00','00 00 80 3b','00']) 
 answer = runcmd(cmd_to_send) 
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 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 1c',access_size,'00 00 00 00','00 02 80 39','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 1c',access_size,'00 00 00 00','09 20 81 38','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 1c',access_size,'00 00 00 00','04 00 80 48','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 20',access_size,'00 00 00 00','00 00 18 00','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 40',access_size,'00 00 00 00','04 b8 00 03','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 58',access_size,'00 00 00 00','00 02 22 27','00']) 
 answer = runcmd(cmd_to_send) 
   
 cmd_to_send = " ".join([WRITE_MEMORY,'63 fd 90 1c',access_size,'00 00 00 00','00 00 00 00','00']) 
 answer = runcmd(cmd_to_send) 
 
 if answer == ACK_ENG or answer == ACK_PROD: 
  print "Write was done." 
 
 #### get status command--must do after each command #### 
 cmd_to_send = " ".join([GET_STATUS,'00 00 00 00 00 00 00 00 00 00 00 00 00 00']) 
 answer = runcmd(cmd_to_send) 
 print 'Status is:' 
 showanswer(answer) 
 
 #### write img to i.MX53 external memory #### 
 infile = open(sys.argv[3],'rb') 
  # get file size with 2 methods 
#  print "size: %d" % os.stat(sys.argv[3]).st_size 
#  print "size: %d" % os.path.getsize(sys.argv[3]) 
 f_size_int = os.path.getsize(sys.argv[3]) 
 f_size_hex = get_formated_hex(f_size_int) 
 
  # provide an address like 0x12784596, and skip '0x' in the string chain 
 mem_add = get_formated_hex(sys.argv[2][2:10]) 
 
 cmd_to_send = " ".join([WRITE_FILE,mem_add,'00',f_size_hex,'00 00 00 00',APPS_TYPE]) 
 answer = runcmd(cmd_to_send) 
 if answer == ACK_ENG or answer == ACK_PROD: 
  while True: 
   tx_data = infile.read(f_size_int) 
   if not tx_data: 
    break 
   uart_port.write(tx_data) 
 else: 
  print "No acknowledge => can't transfer file" 
 
  infile.close() 
 
 #### get status command--must do after each command #### 
 cmd_to_send = " ".join([GET_STATUS,'00 00 00 00 00 00 00 00 00 00 00 00 00 00']) 
 answer = runcmd(cmd_to_send) 
 print 'Status is:' 
 showanswer(answer) 
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 #uart_port.close() 
 
 # because sys.argv[1] is not valid, help message is displayed 
 if no_valid_arg == 1: 
  print "improper usage" 
 
if __name__ == '__main__': 
 main() 
# End  
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Appendix 2: IMX53 Specific Linker Script (IMX53.ld) 
 
/* 
 * Linker script for the iMX53 
 */ 
 
/*  
 * Generate little-endian formatted binary image  
 */ 
OUTPUT_FORMAT ("elf32-littlearm") 
 
ENTRY(_init) 
 
MEMORY 
{ 
  RAM        : ORIGIN = 0xf8002000, LENGTH = 119K 
  eRAM  : ORIGIN = 0x72000000, LENGTH = 990M 
} 
 
EXTERN(__stack_size) 
ASSERT(__stack_size, "Must provide a non-zero stack size"); 
ASSERT(!(__stack_size & 0x7), "Stack not aligned on 128-bit boundary"); 
 
 
irq_stack_top = _text + LENGTH(RAM);             /* IRQ Mode Stack */ 
irq_stack_bottom = irq_stack_top - __stack_size; 
fiq_stack_top = irq_stack_bottom;                /* FIQ Mode Stack */ 
fiq_stack_bottom = fiq_stack_top - __stack_size; 
svc_stack_top = fiq_stack_bottom;                /* SVC Mode Stack */ 
svc_stack_bottom = svc_stack_top - __stack_size; 
abt_stack_top = svc_stack_bottom;                /* ABT Mode Stack */ 
abt_stack_bottom = abt_stack_top - __stack_size; 
und_stack_top = abt_stack_bottom;                /* UND Mode Stack */ 
und_stack_bottom = abt_stack_top - __stack_size; 
sys_stack_top = und_stack_bottom;                /* SYS Mode Stack */ 
sys_stack_bottom = sys_stack_top - __stack_size; 
/* Heap is all memory between code and stacks */ 
_heap_end = sys_stack_bottom; 
_heap_start = _end; 
BOOTIMAGE_SIZE = SIZEOF( .text ) + SIZEOF( .data ); 
 
SECTIONS 
{ 
  
  .text : { 
     Procs.o (.text); 
       
   } >eRAM  
   
  .text1 :  
  {  
    _text = .; 
    _stext = .; 
    BOOTIMAGE_BASE = .; 
    *(.bootimage) 
     
    IVT_BASE = .; 
 *(.IVT) 
     
    BOOTDATA_BASE = .; 
    *(.BOOTDATA) 
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    DCD_BASE = .; 
    *(.DCD)   
    *(.text .text.*)         /* Code */ 
    /**(.rodata .rodata.*)*/     /* Constants, strings, ... */ 
    *(.gnu.linkonce.t.*) 
    *(.glue_7)               /* Glue ARM to thumb code */ 
    *(.glue_7t)              /* Glue thumb to ARM code */ 
    *(.gcc_except_table)  
    *(.gnu.linkonce.r.*) 
    . = ALIGN(4); 
    _etext = .; 
    _sidata = _etext;        /* Start of data stored in flash */ 
    _fini = .; 
    *(.fini) 
  } >RAM 
   
  .data : AT (_etext) 
  { 
    _data = .; 
    _sdata = .;              /* Used for copying data on startup */ 
    *(.ramfunc .ramfunc.* .fastrun .fastrun.*) 
    *(.data .data.*) 
    *(.rodata .rodata.*) 
    *(.gnu.linkonce.d.*) 
    . = ALIGN(4); 
    _edata = .; 
  } >RAM 
   
   .ARM.extab : 
  { 
    *(.ARM.extab*) 
  } >RAM 
   
  __exidx_start = .; 
  .ARM.exidx : 
  { 
    *(.ARM.exidx*) 
  } >RAM 
  __exidx_end = .; 
   
  .bss (NOLOAD) :  
  { 
    . = ALIGN(4); 
    _sbss = .;              /* Used for zeroing bss on startup */ 
    *(.bss .bss.*) 
    *(.gnu.linkonce.b.*) 
    *(COMMON) 
    . = ALIGN(4); 
    _ebss = .; 
  } >RAM 
   
   
   
  _end = .; 
 
  .stab 0 (NOLOAD) : { *(.stab) } 
  .stabstr 0 (NOLOAD) : { *(.stabstr) } 
  /* DWARF debug sections. 
   * Symbols in the DWARF debugging sections are relative to 
   * the beginning of the section so we begin them at 0. 
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   */ 
  /* DWARF 1 */ 
  .debug          0 : { *(.debug) } 
  .line           0 : { *(.line) } 
  /* GNU DWARF 1 extensions */ 
  .debug_srcinfo  0 : { *(.debug_srcinfo) } 
  .debug_sfnames  0 : { *(.debug_sfnames) } 
  /* DWARF 1.1 and DWARF 2 */ 
  .debug_aranges  0 : { *(.debug_aranges) } 
  .debug_pubnames 0 : { *(.debug_pubnames) } 
  /* DWARF 2 */ 
  .debug_info     0 : { *(.debug_info .gnu.linkonce.wi.*) } 
  .debug_abbrev   0 : { *(.debug_abbrev) } 
  .debug_line     0 : { *(.debug_line) } 
  .debug_frame    0 : { *(.debug_frame) } 
  .debug_str      0 : { *(.debug_str) } 
  .debug_loc      0 : { *(.debug_loc) } 
  .debug_macinfo  0 : { *(.debug_macinfo) } 
  /* DWARF 2.1 */ 
  .debug_ranges   0 : { *(.debug_ranges) } 
  /* SGI/MIPS DWARF 2 extensions */ 
  .debug_weaknames 0 : { *(.debug_weaknames) } 
  .debug_funcnames 0 : { *(.debug_funcnames) } 
  .debug_typenames 0 : { *(.debug_typenames) } 
  .debug_varnames  0 : { *(.debug_varnames) } 
 
  .note.gnu.arm.ident 0 : { KEEP (*(.note.gnu.arm.ident)) } 
  .ARM.attributes 0 : { KEEP (*(.ARM.attributes)) } 
  /DISCARD/ : { *(.note.GNU-stack) } 
} 
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